
    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

I don't know if it is my imagination, but these issues are getting bigger each month! I must say I am
getting very good support for UNDU from many of the readers and it does make my work putting it
together much easier. Again, my thanks for everyone's great contributions. This issue is big because there
was so much good stuff to include!

Our randomly selected winner of the UNDU prize this month is Paul Harding for his article on Multi-Color
Text in String Grids, and his prize is a copy of Kick-Ass Delphi by the Coriolis Group. In addition,
OOPSoft, Inc has offered a special set of prizes. For this issue and next issue, they will be giving out 5
copies of their ObjectExpress package (reviewed is issue #18) to randomly chosen contributors. The five
winners this month are Jim Clokey, Eric Fortier, Philip Hibbs, Gene Fowler, and Magnus Baeck.
Remember, next month there will be 5 more copies give out in addition to the regular UNDU prize! We will
also be looking at OOPSoft's new SQLExpress package next issue.

Also, for those of you who are interested, there is now a 16-bit version of the IniOut Property Manager
mentioned in issue #18. If you are viewing this issue as a web page, you can obtain the 16-bit and 32-bit
shareware versions by clicking here.

The next issue will be only 1 month away (rather than 2 for this issue). Look forward to seeing reviews on
Danny Thorpe's excellent Delphi Component Design book, Micro-Edge's Visual SlickEdit for Delphi,
and the AddDict spell checker/thesaurus for Delphi, along with tons of great tips, techniques, and
components!

Learning How To Drive - Disk Information in Delphi

Delphi Books & Periodicals

Questions (and Answers) From Readers

Tips & Tricks

The Component Cookbook

UNDU Subscriber List

Index of Past Issues

Where To Find UNDU

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

Index of Past Issues
Below is a complete index of all principle articles in past issues of the Unofficial Newsletter of Delphi
Users. Provided that you have the prior issues in the same directory as this issue, you can click on any of
these hotspots to go directly to that article. To return to the index, you can click on the Back button, or you
can use the History list. Once you jump to one of these issues, you can navigate through the issue as
you would normally, but you will need to go to the History list to get back to this index. There will be an
updated index included in all future issues of UNDU.

Issue #1 - March 15, 1995
What You Can Do
Component Design
Currency Edit Component
Sample Application
The Bug Hunter Report
About The Editor
SpeedBar And The ComponentPalette
Resource Name Case Sensitivity
Lockups While Linking
Saving Files In The Image Editor
File Peek Application

Issue #2 - April 1, 1995
Books On The Way
Making A Splash Screen
Linking Lockup Revisited
Problem With The CurrEdit Component
Return Value of the ExtractFileExt Function
When Things Go Wrong
Zoom Panel Component

Issue #3 - May 1, 1995
Articles
Books
Connecting To Microsoft Access
Cooking Up Components
Copying Records in a Table
CurrEdit Modifications by Bob Osborn
CurrEdit Modifications by Massimo Ottavini
CurrEdit Modifications by Thorsten Suhr
Creating A Floating Palette
What's Hidden In Delphi's About Box?
Modifications To CurrEdit

Periodicals
Progress Bar Bug
Publications Available
Real Type Property Bug
TIni File Example
Tips & Tricks
Unit Ordering Bug
When Things Go Wrong

Issue #4 - May 24, 1995
Cooking Up Components
Food For Thought - Custom Cursors
Why Are Delphi EXE's So Big?
Passing An Event
Publications Available
Running From A CD
Starting Off Minimized
StatusBar Component
TDBGrid Bug
Tips & Tricks
When Things Go Wrong

Issue #5 - June 26, 1995
Connecting To A Database
Cooking Up Components
DateEdit Component
Delphi Power Toolkit
Faster String Loading
Font Viewer
Image Editor Bugs
Internet Addresses
Loading A Bitmap
Object Alignment Bug
Second Helping - Custom Cursors
StrToTime Function Bug
The Aquarium
Tips & Tricks
What's New
When Things Go Wrong

Issue #6 - July 25, 1995
A Call For Standards
Borland Visual Solutions Pack - Review
Changing a Minimized Applications Title
Component Create - Review
Counting Components On A Form
Cooking Up Components
Debug Box Component
Dynamic Connections To A DLL
Finding A Component By Name
Something Completely Unrelated - TVHost
Status Bar Component

The Loaded Method
Tips & Tricks
What's In Print

Issue #7 - August 31, 1995
ChartFX Article
Component Cookbook
Compression Shareware Component
Corrected DebugBox Source
Crystal Reports - Review
DBase On The Fly
Debug Box Article
Faster String Loading
Formula One - Review
Gupta SQL Windows
Header Converter
Light Lib Press Release
Limiting Form Size
OLE Amigos!
Product Announcements
Product Reviews
Sending Messages
Study Group Schedule
The Beginners Corner
Tips & Tricks
Wallpaper
What's In Print

Issue #8 - October 10, 1995
Annotating A Help System
Core Concepts In Delphi
Creating DLL's
Delphi Articles Recently Printed
Delphi Informant Special Offers
Delphi World Tour
Getting A List Of All Running Programs
How To Use Code Examples
Keyboard Macros in the IDE
The Beginners Corner
Tips & Tricks
Using Delphi To Perform QuickSorts

Issue #9 - November 9, 1995
Using Integer Fields to Store Multiple Data Elements in Tables
Core Concepts In Delphi
Delphi Internet Sites
Book Review - Developing Windows Apps Using Delphi
Object Constructors
QSort Component
The Component Cookbook
TSlideBar Component
TCurrEdit Component

The Delphi Magazine
Tips & Tricks
Using Sample Applications

Issue #10 - December 12, 1995
A Directory Stack Component
A Little Help With PChars
An Extended FileListBox Component
Application Size & Icon Tip
DBImage Discussion
Drag & Drop from File Manager
Modifying the Resource Gauge in TStatusBar
Playing Wave Files from a Resource
Review of Orpheus and ASync Professional
The Component Cookbook
Tips & Tricks
UNDU Readers Choice Awards
Using Integer Fields to Store Multiple Data Elements in Tables

Issue #11 - January 18th, 1996
Core Concepts With Delphi - Part I
Core Concepts With Delphi - Part II
Dynamic Delegation
Data-Aware DateEdit Component
ExtFileListBox Component
DBExtender Product Announcement
Dynamic Form Creation
Finding Run-Time Errors
Selecting Objects in the Delphi IDE
The Beginners Corner
The Delphi Magazine
Top Ten Tips For Delphi
The Component Cookbook
Tips & Tricks
The UNDU Awards

Issue #12 - Feburary 23rd, 1996
The Beginners Corner
Delphi Projects
Marketing Your Components
An LED Component
A 3D Progress Bar
Common Strings Functions
Checking if your application is running already
AutoRepeat for SpeedButtons
Form and Component Creation Tip
Detecting a CD-ROM Drive
Drawing Metafiles in Delphi
Shazam Review
Product Announcement - Dr. Bob's Delphi Experts
Book Review - Instant Delphi Programming
Tips & Tricks

The Component Cookbook

Issue #13 - May 1st, 1996
Core Concepts - Sorting
Delphi Information Connection
Creating Resource-Only DLL's
Quick Reports
TIFIMG Product Announcement

Issue #14 - June 1st, 1996
A 3-D Component
An Animation Component
A Bug In TGauge
The Component Cookbook
A Look At Cross Tabs
New Book - Delphi In Depth
New Book - The Revolutionary Guide to Delphi 2
Making the Enter Key Work Like the Tab Key
Jumping Straight to Form Level
Making Menu Items Work Like Radio Buttons
Modifying The System Menu
Products & Reviews
The Beginners Corner
The UNDU Awards
Tips & Tricks

Issue #15 - August 1st, 1996
UNDU - A Work In Progress…
UNDU Prizes!
The UNDU Subscriber List
Core Concepts With Delphi - Parameter Passing
Delphi Programmers Book Shelf
Component Cookbook
Tips & Tricks
How to 'Catch'Keys
Working with String Grids
Coloring Columns in a Grid
Solving a DLL problem
Reducing Memory Requirements
Creating an AutoDialer component

Issue #16 - September 1st, 1996
Menu Buttons
Core Concepts With Delphi - Enumerated Types
Extending The INI Component
Limiting Multiple Instances Of a Program in Delphi 2.0
How to Draw a Rubber-Banding Line
Marching Ants!
How to Restrict the Mouse Cursor
How to make a Color ComboBox
A Better Way to Create Menu Items
Splash Screen

Splash Screen with a Time Delay

Issue #17 - October 1st, 1996
Does Windows 95 give you a Square Deal?
The Great StringList
Manipulating Regions with Delphi
Tips & Tricks
When Delphi's smart-linker doesn't seem so smart
Cut, Copy, & Paste
A Quick Way of Setting the Tab Order
Background Bitmaps on Forms
Non-Rectangular Windows

Issue #18 - November 1st, 1996
Object Express by OOPSoft Inc
Tips & Tricks
The Component Cookbook
IniOut Component Property Manager
New Book - Delphi Component Design by Danny Thorpe
Storing Fonts in INI Files
Sorting Columns in a DBGrid
What's Your Version Number
Drawing MetaFiles
Adding Undo to your Edit Menu
How To Put Anything In Your Delphi EXE
Delphi Newsgroups
A Simple Clipboard Viewer Component

Issue #19 - January 1st, 1997
Speed Daemon Review
A Look at MagiKit
Humor - Are You Computer Illiterate?
Tips & Tricks
The Component Cookbook
Using the SHFileOperation to Copy/Move/Delete/Rename Files
How to create a Polygon Splash screen
Is Someone else running?
Lock Violation
Printing Directly to a printer
Refreshing MDI Menus
Extending the Background Bitmap Technique
Paradox File Size Limits
Safer use of Enumerated Types
Simplifying Code management with Include
A Look at the TreeView Control
Text, Aligned in a Grid
TPageControl Flambé
Big Bitmaps
Masks ala Transparency

Return to Front Page

Where To Find UNDU
When each issue of UNDU is complete, I put them in the following locations:
1. UNDUs official web site at http://www.informant.com/undu/index.htm. This site houses all

the issues in both HTML and Windows HLP format.

2. Borlands Delphi forum on CompuServe (GO DELPHI) in the "Delphi IDE" file section. This forum will
only hold the issues in Windows HLP format.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

Tips & Tricks
In Issue #19 of UNDU, Paul Harding presented an article on how to determine if another application was
running. Magnus Baeck shows an even simpler approach in "Is Someone Else Running" - Revisited!
Some of you may be familiar with the InputQuery function in Delphi's DIALOG.PAS unit. Wouldn't it be
nice to have a InputQuery that provided a history list or prior selections? Gene Fowler shows us how with
his InputQueryEx function.
Paul Harding is also back with a new tip on displaying multi-colored text in a string grid. Interestingly, this
technique can be expanded into a wide number of other capabilities and even answers one of the
Questions From Readers last month!

Do you need to publish Delphi/Pascal source code on a web site? It can be quite a pain having to do all
that formatting by hand. But a new freeware package allows you to make it quick and painless. Check out
the announcement from Pieter Polak on Converting Pascal Source to HTML.

Duncan Campbell also brings us a quick and easy database tip this month. He shows a way of improving
the performance of processing large database tables.

In last issue, there was a question from readers about how to make your application look and behave
correctly at differing resolutions. Check out Borland's Tech Sheet #2861 that discusses the issue very
clearly.

Last issue, I discussed how to use the SHFileOperation command in the Win95 API to
copy/move/delete/rename files and to add system-level undo support to these actions. Well, I left out one
important thing!

Another interesting technique is presented by Eric Fortier discussing the impact of stored properties on
EXE size. You can read about it in his tip on How to Make Your EXE's Lighter!

But there is a lot more! Check out the other tips in this issue: Form Aspect Ratio, Previous Instances
Revisited and an alternate way of Printing Raw data to the Printer.

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

The Component Cookbook
This month, we have a couple of great new tips for you! First up is Robby Walker's "Tip Of The Day"
Component. With it you can add a professional looking daily tip dialog just like Windows 95 gives you.
Emmanuel Fayet also presents a TFieldPanel component that simplifies gathering multi-field information
from users. Check it out!
Also, an error crept into the TPageControl Flambe' article last month by Grahame Marsh. Fortunately, he
caught it before everyone got too burnt, so he presents a quick revision this month.
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

UNDU Subscriber List
The subscriber list is a method by which I can notify the readers when a new issue is out. I will maintain a
list of readers email addresses and when a new issue is released, I will fire off a batch mailing to notify
everyone that it is available.
This is what you need to do to get on the subscriber list… Simply send me an email to my CompuServe
address (RobertV@compuserve.com) and put the words SUBSCRIBE UNDU anywhere in the subject
line or in the main body of the message. If you no longer wish to be notified of future issues (i.e. you are
on the list and want off…) just send an email with the words UNSUBSCRIBE UNDU.
Thats all there is to it!

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

Learning To Drive
by Grahame Marsh - grahame.s.marsh@corp.courtaulds.co.uk
A common feature of many programs is the display of information relating to disc storage, either locally or
over a network.    These notes relate to some initial probing into the Win95 API: I give a series of utility
procedures and functions which encapsulate the API calls into (I think) easier to use forms.    I round off
this article with an application illustrating their use.

How Many, Which?
The first question to answer is what drives are available?    The API GetLogicalDrives function returns an
integer representing the set of drive letters, bit 0 in the set represents drive A and so on.    This set can be
scanned and a TString filled with the available drive root directories:

procedure GetLogicalDriveList (List : TStrings);
var
 Num : integer;
 Bits : set of 0..25;
begin
 List.Clear;
 integer (Bits) := Windows.GetLogicalDrives;
 for Num := 0 to 25 do
 if Num in Bits then
 List.Add (Char (Num + Ord('A')) + ':\')
end;

Using this it becomes very easy to fill, say,    a combo box with a list of drives:
GetLogicalDriveList (ComboBox1.Items);

What?
The second question is "What are the drives?".    The API GetDriveType returns a value which can be cast
to a simple list of drive types covering floppy, fixed, removable, remote and CD-ROM.

type
 TDriveType = (dtUnknown, dtNoDrive, dtFloppy, dtFixed, dtNetwork, dtCDROM,
 dtRAM, dtFloppy3, dtFloppy5);

function GetDriveType (Drive : Char) : TDriveType;
begin
 Result := TDriveType (Windows.GetDriveType(PChar(Drive + ':\')))
end;

However, the last two, dtFloppy3 and dtFloppy5 are not returned by the API call, it only returns dtFloppy.
To find out which kind of floppy takes a bit more work.    I started knowing that my drive A is 3½ " floppy. I
bought it, I plugged it in, I told the BIOS set up about it, even Win 95 knows the drive size:

So how can I find out?    The API call GetDiskFreeSpace (more on this call later) can obviously be used to
deduce a drive size, but it requires a floppy to be present in the drive, and I wanted a routine which
doesn't actually spin the drive.    After rummaging though the Win32 programmers reference help file, I
came up with the following:

function FloppyDriveSize (Drive : char) : TDriveType;
type
 PDIOC_REG = ^TDIOC_Registers;
 TDIOC_Registers = record
 Reg_EBX, Reg_EDX, Reg_ECX, Reg_EAX,
 Reg_EDI, Reg_ESI, Reg_Flags : DWORD
 end;
const
 VWIN32_DIOC_DOS_INT13 = 4;
var
 H : THandle;
 R : TDIOC_Registers;
 C : DWORD;
begin
 Result := dtFloppy;
 H := CreateFile ('\\.\VWIN32', 0, 0, nil, 0, 0, 0);
 if H <> INVALID_HANDLE_VALUE then
 try
 R.Reg_EAX := $800;
 R.Reg_EDX := ord (upcase(Drive)) - Ord('A');
 if DeviceIOControl (H, VWIN32_DIOC_DOS_INT13, @R,
 SizeOf (R), @R, SizeOf (R), C, nil) and
 (R.Reg_Flags and 1 = 0) then
 if R.Reg_EBX and $FF < 3 then
 Result := dtFloppy5
 else
 Result := dtFloppy3
 finally
 CloseHandle (H)
 end
end;

Looks horrible doesn't it?    I arrived at this code knowing that the BIOS had the value I wanted.    Back in
the good old days of DOS I would not have hesitated:    INT 13 service 8 returns, inter alia, a value
representing floppy drive size.    It turns out that interrupt 13 services are available through the VWIN32
virtual device driver (VxD).    To make the "interrupt" call, you first obtain a handle to the driver, the rather
strange filename, "\\.\VWIN32" tells CreateFile that this is a device driver. The actual call is made using
the API DeviceIOControl call.    This takes the VxD handle, a set of registers for input and returns a set of
registers as output.    In this case I use the same variable for input and output.    The input conditions
required are a drive number (A = 0) in DL and the service number in AH.    The call is now made to
DeviceIOControl.    The registers now are returned with BL representing a drive size (1 = 360K 5¼", 2 =
1.2M 5¼", 3 = 720K 3½ ", 4 = 1.44M 3½ ", 5 = 2.88M 3½ ", and so on, well, this is as far as my BIOS
goes) and the carry flag (least significant bit of the flags) cleared to indicate success.    It is now simple to

select either dtFloppy5 or dtFloppy3 drive type.    Of course, you could split the drive type into the two 5¼"
types and the many 3½ " types, but my aim was to display to the same level as Win 95. In practice you
can use the utility functions something like:

var
 DriveType : TDriveType
....
 DriveType := GetDriveType(Drive);
 if DriveType = dtFloppy then
 DriveType := FloppyDriveSize (Drive);

What? A second way!
Another way of finding out about the drive types in a system is to use the Win 95 SHGetFileInfo shell
function call.    This function returns information about files, directories, folders and, usefully in this case,
disc drives.    You tell the function what drive interests you, what information you want (as a series of
SHGFI_ constants) and it fills a TSHFileInfo record with the information requested.    I have encapsulated
the call into this procedure:

type
 TDriveShellInfo = record
 Icon : hIcon;
 Image : integer;
 DisplayName,
 TypeName : string
 end;
procedure GetDriveShellInfo (Drive : Char; var Info : TDriveShellInfo);
var
 SHFileInfo : TSHFileInfo;
begin
 ShGetFileInfo (PChar (Drive + ':\'), 0, SHFileInfo, SizeOf (TSHFileInfo),
 SHGFI_TYPENAME or SHGFI_DISPLAYNAME or SHGFI_SYSICONINDEX or SHGFI_ICON);
 with Info do
 begin
 Icon := SHFileInfo.hIcon;
 Image := SHFileInfo.iIcon;
 DisplayName := SHFileInfo.szDisplayName;
 TypeName := SHFileInfo.szTypeName
 end
end;

The icon is a handle to the drive icon, image is the icon number in the system's image list (more on this
later), display name returns the exact text that appears in the explorer combo box    Drivelabel (C:) for a
hard disc and 3½ Floppy (A:) for a floppy.

Volume Control
If your application needs some specific information about a particular disc, it can call the
GetVolumeInformation API.    This I have encapsulated as:

type
 TVolumeInformation = record
 VolumeName : string;
 VolumeSerialNumber,
 MaximumComponentLength,
 FileSystemFlags : integer;
 FileSystemName : string;
 end;
function GetVolumeInformation (D : char; var V : TVolumeInformation) : boolean;
var
 O : integer;

begin
 O := SetErrorMode (SEM_FAILCRITICALERRORS);
 try
 with V do
 begin
 SetLength (VolumeName, MAX_PATH);
 SetLength (FileSystemName, MAX_PATH);
 VolumeSerialNumber := 0;
 MaximumComponentLength := 0;
 FileSystemFlags := 0;
 Result := Windows.GetVolumeInformation (PChar (D+':\'), PChar

(VolumeName), MAX_PATH,
 @VolumeSerialNumber, MaximumComponentLength, FileSystemFlags,
 PChar (FileSystemName), MAX_PATH);
 RealizeLength (VolumeName);
 RealizeLength (FileSystemName)
 end
 finally
 SetErrorMode (O)
 end
end;

VolumeName : The name of the specified volume.

VolumeSerialNumber : The volume serial number.

MaximumComponentLength : This value is the maximum length, in characters, of a filename
component supported by the specified file system. A filename component is that portion of a filename
between backslashes. The MaximumComponentLength is used to indicate that long names are supported
by the specified file system. For example, for a FAT file system supporting long names, the function stores
the value 255, rather than the previous 8.3 indicator. Long names can also be supported on systems that
use the NTFS and HPFS file systems.

FileSystemFlags : These are flags associated with the specified file system. This parameter can be any
combination of the following flags, with one exception: FS_FILE_COMPRESSION and
FS_VOL_IS_COMPRESSED are mutually exclusive.

Value Meaning
FS_CASE_IS_PRESERVED If this flag is set, the file system preserves the case of filenames

when it places a name on disk.

FS_CASE_SENSITIVE If this flag is set, the file system supports case-sensitive
filenames.

FS_UNICODE_STORED_ON_DISK If this flag is set, the file system supports Unicode in filenames
as they    appear on disk.

FS_PERSISTENT_ACLS If this flag is set, the file system preserves and enforces access
control    lists. For example, NTFS preserves and enforces ACLs,
HPFS and FAT do not.

FS_FILE_COMPRESSION The file system supports file-based compression.

FS_VOL_IS_COMPRESSED The specified volume is a compressed volume; for example, a
DoubleSpace volume.

FileSystemName    :    The name of the file system (such as FAT, HPFS, CDFS or NTFS).

Of this data, the volume name and volume serial number is of most use.    The name can be used to

identify a disc of a certain type (during say an installation process).    The serial number is useful since it
can be used to ensure that the punter has not, say,    changed the floppy disc when writing multiple files to
it.

Retry Cancel
Before continuing with drive utilities it is worth examining the behavior of Win 95 when their is a disc fault,
say, no disc in the drive, then a retry-cancel dialog appears:

It is fairly simple to emulate this behavior by ensuring that each function that can cause an error
suppresses critical errors and returns a boolean value to indicate success.    You can then wrap the
function in a while..do only allowing exit on success or cancel.    The retry function in the utilities looks like
this:

function DiscErrorMessage (Drive : Char) : string;
begin
 Result := Format ('%s:\ is not accessible.'#13#10#13#10+'%s',
 [uppercase(Drive), SysErrorMessage (GetLastError)])
end;
function Retry (Drive : Char) : boolean;
begin
 Result := Application.MessageBox (
 PChar (DiscErrorMessage (Drive)),
 PChar (Application.Title),
 mb_RetryCancel or mb_IconError) = idRetry
end;

I have left this simple on purpose, if a more complex title is required it would be easy enough to write a
more specialized retry function.    One further level of digression is to look at the SysErrorMessage
function.    This is in the SysUtils unit.    It takes am error code and returns a text message translating the
code (eg error code 3 translates to "The system cannot find the path specified.". The version in SysUtils
strips off the trailing full stop and CRLF.    Additionally, it has no provision for additional parameters, error
message 34 returns "The wrong diskette is in the drive. Insert %2 (Volume Serial Number: %3) into drive
%1.".    It is simple enough to provide the parameters by re-writing the SysErrorMessage function as
follows (and, for my preference not strip off the training .CRLF) :

function SysErrorMessageParams(ErrorCode:Integer;const Params:array of string):
string;

const
 L = 255;
begin
 SetLength (Result, L);
 FormatMessage (FORMAT_MESSAGE_FROM_SYSTEM or FORMAT_MESSAGE_ARGUMENT_ARRAY,
 nil, ErrorCode, 0, PChar(Result), L, @Params);
 RealizeLength (Result)
end;
function SysErrorMessage (ErrorCode: Integer): string;
begin
 Result := SysErrorMessageParams (ErrorCode, [''])
end;

This does leave you with some work to provide the parameters needed for certain error messages, but at
least the error messages themselves are available, and there are, in fact, only a few that take parameters.

So, getting back to Retry-Cancel, you can wrap a call to GetVolumeInformation to show a Retry-Cancel
dialog, with an error message using:

while not GetVolumeInformation (Drive, VolumeInfo) do
 if not Retry (Drive) then Abort;

Total and Free Space
Further information on a particular disc in a drive can be obtained using the GetDiskFreeSpace API call.   
This returns data needed to calculate the total and free space on a drive:

type
 TDiscFreeSpace = record
 SectorsPerCluster,
 BytesPerSector,
 NumberOfFreeClusters,
 TotalNumberOfClusters,
 TotalSpace,
 FreeSpace : integer
 end;
function GetDiscFreeSpace (Drive : char; var D : TDiscFreeSpace) : boolean;
var
 O : integer;
begin
 FillChar (D, Sizeof (TDiscFreeSpace), 0);
 O := SetErrorMode (SEM_FAILCRITICALERRORS);
 try
 with D do
 begin
 Result := Windows.GetDiskFreeSpace (PChar (Drive + ':\'),

SectorsPerCluster,
 BytesPerSector, NumberOfFreeClusters, TotalNumberOfClusters);
 FreeSpace := BytesPerSector*SectorsPerCluster*NumberOfFreeClusters;
 TotalSpace := BytesPerSector*SectorsPerCluster*TotalNumberOfClusters
 end
 finally
 SetErrorMode (O)
 end
end;

The returned record titles I hope are self explanatory - you won't learn much more from the Win 32 API
help.    Obviously the two calculated values are going to be the most useful and their difference gives the
used space.

A picture is worth a thousand words
Above I used the SHGetFileInfo call to obtain information about a drive.    I now will expand on this most
useful function, and, in particular, look at the system image list.    There are in fact two system image lists,
large images and small images.    You can set-up a TImageList component to contain say the large
images by

var
 Images : TImageList;
 SHFileInfo : TSHFileInfo;
....
 Images := TImageList.Create (nil);
 Images.ShareImages := true;
 Images := ShGetFileInfo ('*.*', 0, SHFileInfo, SizeOf (TSHFileInfo),

SHGFI_LARGEICON or SHGFI_SYSICONINDEX);

In this case the data put into the SHFileInfo structure is of no interest, the function itself returns a handle
to a TImageList.    The discutil unit obtains image lists of both the large and small icons and holds them

globally available. You can view the image list using this simple form.

Code listings:
Images1.pas - Form Code File

Images1.dfm - Form File

DI1.pas- Example form code file

DI1.dfm- Example form file

DI.dpr- Example project file

Also needs DiscUtils.pas

On my computer this produces a list, the top part of which looks like this:

There is two thing that you can say - boy! what a good collection of icons, but also, the system icons
(folders etc.) are mixed up with application icons which are machine specific.    So to use these icons you
must either extract them and save them yourself, or obtain the image number in the list to reference an
image from the system because I don't think you can rely on the absolute location of any image being the
same on any other machine.    The obtaining the reference number is what I have done in the utilities for
the drive images given in the top row.

Application
To illustrate all of these drive utilities I have re-written an example program given by Richter (Advanced
Windows, Jeffrey Richter, Microsoft Press, ISBN 1-55615-677-4) in Delphi and added the icon
information.    When run it displays the available information from the utility functions.    These screen
shots show a floppy, hard disc and CD-ROM drive:

One advantage of dynamically obtaining an icon of a drive, is that a CD_ROM drive can have an icon on it
which will be substituted for the system icon:

Afterthoughts
I would predict that every programmer of Delphi has a unit where useful bits and pieces not otherwise in
Delphi are collected.    This will be called something like Utils or Useful.    My intention is that these disc
utilities are not a static set to put somewhere and used as a block together, but they should be merged
into your general set of useful stuff you have in your own development area.     

Most of these utilities are Win 95 specific, I have new computer arriving soon which, I hope will have NT 4
on it, so I will test and modify these utilities to suit.    But I have no interest in backward compatibility to NT
3.5.

Finally, I am working towards a replacement unit for FileCtrl which contains Win 95 look-a-like
components.    Obtaining the drive information and drive icons is an important step towards this goal.    But
this will be a future article for UNDU…

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for Images1.Pas
unit images1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 ExtCtrls;

type
 TForm1 = class(TForm)
 ScrollBox1: TScrollBox;
 PaintBox1: TPaintBox;
 procedure PaintBox1Click(Sender: TObject);
 private
 public
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

uses
 DiscUtil;

procedure TForm1.PaintBox1Click(Sender: TObject);
const
 Margin = 5;
var
 XPos,
 YPos,
 Loop : integer;
begin
 PaintBox1.Width := ClientWidth - Margin * 4;
 PaintBox1.Height := LargeImages.Count * (LargeImages.Height + Margin) div
 pred (PaintBox1.Width div (LargeImages.Width+Margin)) +
Margin * 2;
 XPos := Margin;
 YPos := Margin;

 for loop := 0 to LargeImages.Count - 1 do
 begin
 LargeImages.Draw (PaintBox1.Canvas, XPos, YPos, Loop);

 XPos := XPos + LargeImages.Width + Margin;
 if XPos + LargeImages.Width + Margin > PaintBox1.Width then
 begin
 XPos := Margin;
 YPos := YPos + LargeImages.Height + Margin
 end;
 end;
end;

{$O-}

(*
//'c:\program files\borland\delphi 2.0\bin\delphi32.exe'

procedure TForm1.SpeedButton1Click(Sender: TObject);
var
 S : TSHFileInfo;
 E,
 Z : integer;
 D1, D2,
 D, T : string;

 I : TIcon;
 L : TImageList;
 H : HResult;
 U,
 V : IShellFolder;
 K : IEnumIDList;
 W,
 Q : PItemIDList;
 R : ULONG;
type
 PA = array [0..24] of char;
var
 A : ^PA;
type
 PSSS = ^TSSS;
 TSSS = packed record
 Size : word;
 Head1,
 Head2 : byte;
 Data : TGUID
 end;

var
 X : PSSS;
begin
 H := SHGetSpecialFolderLocation (0, CSIDL_DRIVES, W);
 X := pointer (W);
 A := pointer (W);
 X^.Head1 := 31;
 Z := ShGetFileInfo (pointer(W), 0, S, SizeOf (S),
 SHGFI_DISPLAYNAME or SHGFI_SYSICONINDEX or SHGFI_PIDL);

 H := SHGetDesktopFolder (U);
 H := U.BindToObject (W, nil, IID_ISHELLFOLDER, pointer(V));

 H := V.EnumObjects (Handle, $FF, K);
 repeat
 H := K.Next (1, Q, R);
 if H = 0 then
 begin
 X := pointer (Q);
 A := pointer (Q);
 if X^.Head1 = $2E then
 begin
 X^.Head1 := X^.Head1 -15;
 Z := ShGetFileInfo (pointer(Q), 0, S, SizeOf (S),
 SHGFI_TYPENAME or SHGFI_ICON or SHGFI_DISPLAYNAME or SHGFI_SYSICONINDEX or
 SHGFI_PIDL or SHGFI_ATTRIBUTES);
 end else begin
 D1 := Char (X^.Head2) + ':\';
 Z := ShGetFileInfo (PChar(D1), 0, S, SizeOf (S),
 SHGFI_TYPENAME or SHGFI_ICON or SHGFI_DISPLAYNAME or SHGFI_SYSICONINDEX or
 SHGFI_ATTRIBUTES);
 end;

 D1 := S.szDisplayName;
 D2 := S.szTypeName;

 I := TIcon.Create;
 I.Handle := S.hIcon;
 Image1.Picture.Icon := I;
 I.Free;
 Label1.Caption := S.szDisplayName;
 Label2.Caption := S.szTypeName;
 Application.ProcessMessages;
 Sleep (1000)
 end
 until H <> 0;

 H := SHGetSpecialFolderLocation (0, CSIDL_BITBUCKET, W);
 Z := ShGetFileInfo (pointer(W), 0, S, SizeOf (S),
 SHGFI_TYPENAME or SHGFI_ICON or SHGFI_DISPLAYNAME or SHGFI_SYSICONINDEX or
 SHGFI_PIDL);
 E := GetLastError;
 Label1.Caption := S.szDisplayName;
 Label2.Caption := S.szTypeName;

 I := TIcon.Create;
 I.Handle := S.hIcon;
 Image1.Picture.Icon := I;
 I.Free;

 Beep
end; *)

(*
type
 TSHFileInfoA = record
 hIcon: HICON; { out: icon }
 iIcon: Integer; { out: icon index }
 dwAttributes: DWORD; { out: SFGAO_ flags }
 szDisplayName: array [0..MAX_PATH-1] of AnsiChar; { out: display name (or path) }
 szTypeName: array [0..79] of AnsiChar; { out: type name }
 end; *)

end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for Images1.dfm
object Form1: TForm1
 Left = 388
 Top = 252
 Width = 349
 Height = 293
 Caption = 'Form1'
 Font.Color = clWindowText
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 PixelsPerInch = 96
 TextHeight = 13
 object ScrollBox1: TScrollBox
 Left = 0
 Top = 0
 Width = 341
 Height = 266
 Align = alClient
 BorderStyle = bsNone
 TabOrder = 0
 object PaintBox1: TPaintBox
 Left = 0
 Top = 0
 Width = 129
 Height = 105
 OnPaint = PaintBox1Click
 end
 end
end

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for DiscUtils.Pas
unit DiscUtil;

interface

uses Windows, SysUtils, Controls, ShellAPI, Classes, Forms;

//--- Error handling ---

function DiscErrorMessage (Drive : Char) : string;
function FormatVolumeSerialNumber (N : integer) : string;
function Retry (Drive : Char) : boolean;
function SysErrorMessage (ErrorCode: Integer): string;
function SysErrorMessageParams (ErrorCode: Integer;
 const Params : array of string): string;

//--- Disc volume information --

type
 TVolumeInformation = record
 VolumeName : string;
 VolumeSerialNumber,
 MaximumComponentLength,
 FileSystemFlags : integer;
 FileSystemName : string;
 end;

function GetNetworkVolumeName (D : char): string;
function GetVolumeInformation (D : char; var V : TVolumeInformation) : boolean;
function GetVolumeName (D : char) : string;

//--- System image lists ---

var
 SmallImages,
 LargeImages : TImageList;

//--- Types of disc drive --

type
 TDriveType = (dtUnknown, dtNoDrive, dtFloppy, dtFixed, dtNetwork, dtCDROM,
 dtRAM, dtFloppy3, dtFloppy5);

const
 DriveNames : array [TDriveType] of string[9] =
 ('Unknown', 'None', 'Floppy', 'Fixed', 'Network', 'CD-ROM',
 'RAM', '3½ Floppy', '5¼ Floppy');

function FloppyDriveSize (Drive : char) : TDriveType;
function GetDriveType (Drive : Char) : TDriveType;

type
 TDriveShellInfo = record
 Icon : hIcon;
 Image : integer;
 DisplayName,
 TypeName : string
 end;

procedure GetDriveShellInfo (Drive : Char; var Info : TDriveShellInfo);

//--- Information on available drives --

procedure GetLogicalDriveList (List : TStrings);

type
 TDiscFreeSpace = record
 SectorsPerCluster,
 BytesPerSector,
 NumberOfFreeClusters,
 TotalNumberOfClusters,
 TotalSpace,
 FreeSpace : integer
 end;

function GetDiscFreeSpace (Drive : char; var D : TDiscFreeSpace) : boolean;

//--

implementation

//--- Internal

procedure RealizeLength(var S: string);
begin
 SetLength (S, StrLen (PChar(S)))
end;

//--- Error handling

function SysErrorMessageParams (ErrorCode: Integer; const Params : array of string):
string;
const
 L = 255;
begin
 SetLength (Result, L);
 FormatMessage (FORMAT_MESSAGE_FROM_SYSTEM or FORMAT_MESSAGE_ARGUMENT_ARRAY,
 nil, ErrorCode, 0, PChar(Result), L, @Params);
 RealizeLength (Result)
end;

function SysErrorMessage (ErrorCode: Integer): string;
begin
 Result := SysErrorMessageParams (ErrorCode, [''])
end;

function FormatVolumeSerialNumber (N : integer) : string;
begin
 Result := Format ('%X-%X', [longrec(N).hi, longrec(N).lo])
end;

function DiscErrorMessage (Drive : Char) : string;
begin
 Result := Format ('%s:\ is not accessible.'#13#10#13#10+'%s',
 [uppercase(Drive), SysErrorMessage (GetLastError)])
end;

function Retry (Drive : Char) : boolean;
begin
 Result := Application.MessageBox (
 PChar (DiscErrorMessage (Drive)),
 PChar (Application.Title),
 mb_RetryCancel or mb_IconError) = idRetry
end;

//--- Volume Information

function GetVolumeInformation (D : char; var V : TVolumeInformation) : boolean;
var
 O : integer;
begin
 O := SetErrorMode (SEM_FAILCRITICALERRORS);
 try
 with V do
 begin
 SetLength (VolumeName, MAX_PATH);
 SetLength (FileSystemName, MAX_PATH);
 VolumeSerialNumber := 0;
 MaximumComponentLength := 0;
 FileSystemFlags := 0;
 Result := Windows.GetVolumeInformation (PChar (D+':\'), PChar (VolumeName),
MAX_PATH,
 @VolumeSerialNumber, MaximumComponentLength, FileSystemFlags,
 PChar (FileSystemName), MAX_PATH);
 RealizeLength (VolumeName);
 RealizeLength (FileSystemName)
 end
 finally
 SetErrorMode (O)
 end
end;

function GetVolumeName (D : char) : string;
var
 T : TVolumeInformation;
begin
 if GetVolumeInformation (D, T) then
 Result := T.VolumeName
 else
 Result := ''
end;

function GetNetworkVolumeName (D : char): string;
var
 L : integer;
begin
 L := MAX_PATH;
 SetLength (Result, L);
 if WNetGetConnection (PChar(D+':'#0), PChar(Result), L) = NO_ERROR then
 RealizeLength (Result)
 else
 Result := GetVolumeName(D)
end;

//--- floppy disc size determination

function FloppyDriveSize (Drive : char) : TDriveType;
type
 PDIOC_REG = ^TDIOC_Registers;
 TDIOC_Registers = record
 Reg_EBX, Reg_EDX, Reg_ECX, Reg_EAX, Reg_EDI, Reg_ESI, Reg_Flags : DWORD
 end;
const
 VWIN32_DIOC_DOS_INT13 = 4; // Performs Interrupt 13h commands.
var
 H : THandle;
 R : TDIOC_Registers;

 C : DWORD;
begin
 Result := dtFloppy;
 H := CreateFile ('\\.\VWIN32', 0, 0, nil, 0, 0, 0);
 if H <> INVALID_HANDLE_VALUE then
 try
 R.Reg_EAX := $800; // service 8 in AH
 R.Reg_EDX := ord (Upcase(Drive)) - Ord('A'); // drive number in DL
 if DeviceIOControl (H, VWIN32_DIOC_DOS_INT13, @R, SizeOf (R), @R, SizeOf (R), C,
nil)
 and (R.Reg_Flags and 1 = 0) then // clear CF indicates success
 if R.Reg_EBX and $FF < 3 then // drive type in BL
 Result := dtFloppy5 // 1 = 360K, 2 = 1.2MB
 else
 Result := dtFloppy3 // 3 = 720K 4 = 1.44MB 5 = 2.88MB
 finally
 CloseHandle (H)
 end
end;

//--- Available drive information

function GetDiscFreeSpace (Drive : char; var D : TDiscFreeSpace) : boolean;
var
 O : integer;
begin
 FillChar (D, Sizeof (TDiscFreeSpace), 0);
 O := SetErrorMode (SEM_FAILCRITICALERRORS);
 try
 with D do
 begin
 Result := Windows.GetDiskFreeSpace (PChar (Drive + ':\'), SectorsPerCluster,
 BytesPerSector, NumberOfFreeClusters, TotalNumberOfClusters);
 FreeSpace := BytesPerSector*SectorsPerCluster*NumberOfFreeClusters;
 TotalSpace := BytesPerSector*SectorsPerCluster*TotalNumberOfClusters
 end
 finally
 SetErrorMode (O)
 end
end;

procedure GetLogicalDriveList (List : TStrings);
var
 Num : integer;
 Bits : set of 0..25;
begin
 List.Clear;
 integer (Bits) := Windows.GetLogicalDrives;
 for Num := 0 to 25 do
 if Num in Bits then
 List.Add (Char (Num + Ord('A')) + ':\')
end;

function GetDriveType (Drive : Char) : TDriveType;
begin
 Result := TDriveType (Windows.GetDriveType(PChar(Drive + ':\')))
end;

procedure GetDriveShellInfo (Drive : Char; var Info : TDriveShellInfo);
var
 SHFileInfo : TSHFileInfo;
begin
 ShGetFileInfo (PChar (Drive + ':\'), 0, SHFileInfo, SizeOf (TSHFileInfo),

 SHGFI_TYPENAME or SHGFI_DISPLAYNAME or SHGFI_SYSICONINDEX or SHGFI_ICON);
 with Info do
 begin
 Icon := SHFileInfo.hIcon;
 Image := SHFileInfo.iIcon;
 DisplayName := SHFileInfo.szDisplayName;
 TypeName := SHFileInfo.szTypeName
 end
end;

//--- unit start-up and close-down

function GetImageList (Option : integer) : TImageList;
var
 SHFileInfo : TSHFileInfo;
begin
 Result := TImageList.Create (nil);
 with Result do
 begin
 ShareImages := true;
 Handle := ShGetFileInfo ('*.*', 0, SHFileInfo, SizeOf (TSHFileInfo),
 Option or SHGFI_SYSICONINDEX)
 end
end;

initialization
 LargeImages := GetImageList (SHGFI_LARGEICON);
 SmallImages := GetImageList (SHGFI_SMALLICON)
finalization
 LargeImages.Free;
 SmallImages.Free
end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for DI1.Pas
unit di1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, DiscUtil, Buttons, ExtCtrls;

type
 TDiscVolInfoForm = class(TForm)
 DrivesCB: TComboBox;
 Label1: TLabel;
 GroupBox1: TGroupBox;
 Label2: TLabel;
 DriveTypeLabel: TLabel;
 RefreshBtn: TBitBtn;
 Panel1: TPanel;
 DriveImageBitmap: TImage;
 Bevel1: TBevel;
 Label3: TLabel;
 Label4: TLabel;
 Label5: TLabel;
 Label6: TLabel;
 Label7: TLabel;
 VolumeLabelLabel: TLabel;
 SerialNumberLabel: TLabel;
 FlagsLabel1: TLabel;
 FlagsLabel2: TLabel;
 FlagsLabel3: TLabel;
 FileSystemLabel: TLabel;
 ComponentLengthLabel: TLabel;
 FlagsLabel4: TLabel;
 FlagsLabel5: TLabel;
 GroupBox2: TGroupBox;
 Label8: TLabel;
 Label9: TLabel;
 Label10: TLabel;
 Label11: TLabel;
 SectorsPerClusterLabel: TLabel;
 BytesPerSectorLabel: TLabel;
 FreeClustersLabel: TLabel;
 ClustersLabel: TLabel;
 AboutBtn: TBitBtn;
 SmallCheckBox: TCheckBox;
 Label12: TLabel;
 Bevel2: TBevel;
 Label13: TLabel;
 Label14: TLabel;
 FreeSpaceLabel: TLabel;
 DiscSpaceLabel: TLabel;
 Label15: TLabel;
 ShellNameLabel: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure FillInInfo(Sender: TObject);
 procedure AboutBtnClick(Sender: TObject);
 procedure FillInImage(Sender: TObject);
 private
 DriveImage : integer;
 public
 end;

var
 DiscVolInfoForm: TDiscVolInfoForm;

implementation

{$R *.DFM}

procedure TDiscVolInfoForm.FormCreate(Sender: TObject);
begin
 GetLogicalDriveList (DrivesCB.Items);
 DrivesCB.ItemIndex := DrivesCB.Items.IndexOf ('C:\');
 FillInInfo (Sender)
end;

procedure TDiscVolInfoForm.FillInInfo (Sender: TObject);
var
 Drive : char;
 DriveType : TDriveType;
 Loop : integer;
 Info : TDriveShellInfo;
 VolumeInfo : TVolumeInformation;
 DiscFreeSpace : TDiscFreeSpace;

begin
 for loop := 0 to ComponentCount -1 do
 if Components [Loop] is TLabel then
 with Components [Loop] as TLabel do
 case Tag of
 1 : Caption := '';
 2 : Caption := '0'
 end;

 Drive := DrivesCB.Items [DrivesCB.ItemIndex][1];
 DriveType := GetDriveType(Drive);
 if DriveType = dtFloppy then
 begin
 DriveType := FloppyDriveSize (Drive);
 Screen.Cursor := crHourglass
 end;

 try
 DriveTypeLabel.Caption := DriveNames [DriveType];
 GetDriveShellInfo (Drive, Info);
 DriveImage := Info.Image;
 FillInImage (Sender);
 ShellNameLabel.Caption := Info.DisplayName;

 while not GetVolumeInformation (Drive, VolumeInfo) do
 if not Retry (Drive) then Abort;

 with VolumeInfo do
 begin
 if DriveType = dtNetwork then
 VolumeLabelLabel.Caption := GetNetworkVolumeName (Drive)
 else
 if VolumeName = '' then
 VolumeLabelLabel.Caption := '[none]'
 else
 VolumeLabelLabel.Caption := VolumeName;

 SerialNumberLabel.Caption := FormatVolumeSerialNumber (VolumeSerialNumber);

 ComponentLengthLabel.Caption := IntToStr (MaximumComponentLength);

 if FileSystemFlags and FS_CASE_IS_PRESERVED <> 0 then
 FlagsLabel1.Caption := 'FS_CASE_IS_PRESERVED';

 if FileSystemFlags and FS_CASE_SENSITIVE <> 0 then
 FlagsLabel2.Caption := 'FS_CASE_SENSITIVE';

 if FileSystemFlags and FS_UNICODE_STORED_ON_DISK <> 0 then
 FlagsLabel3.Caption := 'FS_UNICODE_STORED_ON_DISK';

 if FileSystemFlags and FS_PERSISTENT_ACLS <> 0 then
 FlagsLabel4.Caption := 'FS_PERSISTENT_ACLS';

 if FileSystemFlags and FS_VOL_IS_COMPRESSED <> 0 then
 FlagsLabel5.Caption := 'FS_VOL_IS_COMPRESSED'
 else
 if FileSystemFlags and FS_FILE_COMPRESSION <> 0 then
 FlagsLabel5.Caption := 'FS_FILE_COMPRESSION';

 FileSystemLabel.Caption := FileSystemName
 end;

 while not GetDiscFreeSpace (Drive, DiscFreeSpace) do
 if not Retry (Drive) then Abort;

 with DiscFreeSpace do
 begin
 SectorsPerClusterLabel.Caption := IntToStr (SectorsPerCluster);
 BytesPerSectorLabel.Caption := IntToStr (BytesPerSector);
 FreeClustersLabel.Caption := IntToStr (NumberOfFreeClusters);
 ClustersLabel.Caption := IntToStr (TotalNumberOfClusters);
 FreeSpaceLabel.Caption := IntToStr (FreeSpace);
 DiscSpaceLabel.Caption := IntToStr (TotalSpace)
 end

 finally
 Screen.Cursor := crDefault
 end
end;

procedure TDiscVolInfoForm.FillInImage (Sender: TObject);
var
 DriveBitmap : TBitmap;
begin
 DriveBitmap := TBitmap.Create;
 try
 if DriveImage > 0 then
 if SmallCheckBox.Checked then
 SmallImages.GetBitmap (DriveImage, DriveBitmap)
 else
 LargeImages.GetBitmap (DriveImage, DriveBitmap);
 DriveImageBitmap.Picture.Bitmap := DriveBitmap
 finally
 DriveBitmap.Free
 end
end;

procedure TDiscVolInfoForm.AboutBtnClick(Sender: TObject);
begin
 Application.MessageBox (
 #13+
 'Grahame Marsh for'#13+

 'The Unofficial Newsletter of Delphi Users'#13+
 'January 1997'#13,
 PChar (Application.Title), mb_Ok or mb_IconInformation)
end;

end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for DI1.dfm
object DiscVolInfoForm: TDiscVolInfoForm
 Left = 392
 Top = 233
 ActiveControl = DrivesCB
 BorderIcons = [biSystemMenu, biMinimize]
 BorderStyle = bsSingle
 Caption = 'Disc Volume Information'
 ClientHeight = 425
 ClientWidth = 337
 Font.Color = clWindowText
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 OnCreate = FormCreate
 PixelsPerInch = 96
 TextHeight = 13
 object Label1: TLabel
 Left = 8
 Top = 8
 Width = 68
 Height = 13
 Caption = '&Logical drives:'
 FocusControl = DrivesCB
 end
 object Label2: TLabel
 Left = 8
 Top = 48
 Width = 51
 Height = 13
 Caption = 'Drive type:'
 end
 object DriveTypeLabel: TLabel
 Tag = 1
 Left = 96
 Top = 48
 Width = 7
 Height = 13
 Caption = 'X'
 end
 object Bevel1: TBevel
 Left = 272
 Top = 4
 Width = 56
 Height = 56
 end
 object Label12: TLabel
 Left = 224
 Top = 8
 Width = 32
 Height = 13
 Caption = 'Image:'
 end
 object Label15: TLabel
 Left = 8
 Top = 64
 Width = 55
 Height = 13
 Caption = 'Shell name:'
 end
 object ShellNameLabel: TLabel

 Left = 96
 Top = 64
 Width = 9
 Height = 13
 Caption = 'X'
 end
 object DrivesCB: TComboBox
 Left = 96
 Top = 8
 Width = 97
 Height = 21
 Style = csDropDownList
 ItemHeight = 13
 TabOrder = 0
 OnChange = FillInInfo
 end
 object GroupBox1: TGroupBox
 Left = 8
 Top = 88
 Width = 321
 Height = 177
 Caption = 'Volume information'
 TabOrder = 5
 object Label3: TLabel
 Left = 16
 Top = 24
 Width = 63
 Height = 13
 Caption = 'Volume label:'
 end
 object Label4: TLabel
 Left = 16
 Top = 40
 Width = 67
 Height = 13
 Caption = 'Serial number:'
 end
 object Label5: TLabel
 Left = 16
 Top = 56
 Width = 89
 Height = 13
 Caption = 'Component length:'
 end
 object Label6: TLabel
 Left = 16
 Top = 72
 Width = 28
 Height = 13
 Caption = 'Flags:'
 end
 object Label7: TLabel
 Left = 16
 Top = 152
 Width = 83
 Height = 13
 Caption = 'File system name:'
 end
 object VolumeLabelLabel: TLabel
 Tag = 1
 Left = 120
 Top = 24
 Width = 7

 Height = 13
 Caption = 'X'
 end
 object SerialNumberLabel: TLabel
 Tag = 1
 Left = 120
 Top = 40
 Width = 7
 Height = 13
 Caption = 'X'
 end
 object FlagsLabel1: TLabel
 Tag = 1
 Left = 120
 Top = 72
 Width = 7
 Height = 13
 Caption = 'X'
 end
 object FlagsLabel2: TLabel
 Tag = 1
 Left = 120
 Top = 88
 Width = 7
 Height = 13
 Caption = 'X'
 end
 object FlagsLabel3: TLabel
 Tag = 1
 Left = 120
 Top = 104
 Width = 7
 Height = 13
 Caption = 'X'
 end
 object FileSystemLabel: TLabel
 Tag = 1
 Left = 120
 Top = 152
 Width = 7
 Height = 13
 Caption = 'X'
 end
 object ComponentLengthLabel: TLabel
 Tag = 1
 Left = 120
 Top = 56
 Width = 7
 Height = 13
 Caption = 'X'
 end
 object FlagsLabel4: TLabel
 Tag = 1
 Left = 120
 Top = 120
 Width = 7
 Height = 13
 Caption = 'X'
 end
 object FlagsLabel5: TLabel
 Tag = 1
 Left = 120
 Top = 136

 Width = 7
 Height = 13
 Caption = 'X'
 end
 end
 object RefreshBtn: TBitBtn
 Left = 248
 Top = 352
 Width = 75
 Height = 25
 Caption = '&Refresh'
 TabOrder = 2
 OnClick = FillInInfo
 Glyph.Data = {
 76010000424D7601000000000000760000002800000020000000100000000100
 040000000000000100
 80000080000000808000800000008000800080800000C0C0C000808080000000
 FF0000FF000000FFFF00FF000000FF00FF00FFFF0000FFFFFF00333333333333
 33
 33333FFFFFFFFFFFFFFF000000000000000088888888888888880F8888888888
 88808F3F3333333FFF3F0F977777777777703F833FFF33888F3F0F7700000000
 00003F338888338F8F3F0F77777777770E003F333FFF33888F3F0F7700000000
 00003F338888338F8F3F0F77777777770E003F3333333F8388FF0F7777777777
 0E003F3333338888388F0FFFFFFFFF0000E00FFFFFFF8F88838F00000000000E
 000E088888888F888F8F33333333330E000E0333333388FFF883333333333300
 EEE0033333333888883333333333333000003333333333333333}
 NumGlyphs = 2
 end
 object Panel1: TPanel
 Left = 276
 Top = 8
 Width = 48
 Height = 48
 BevelOuter = bvNone
 Color = clWhite
 TabOrder = 4
 object DriveImageBitmap: TImage
 Left = 8
 Top = 8
 Width = 32
 Height = 32
 Center = True
 end
 end
 object GroupBox2: TGroupBox
 Left = 8
 Top = 272
 Width = 225
 Height = 145
 Caption = 'Disc free space'
 TabOrder = 6
 object Label8: TLabel
 Left = 16
 Top = 24
 Width = 75
 Height = 13
 Caption = 'Sectors/cluster:'
 end
 object Label9: TLabel
 Left = 16
 Top = 40
 Width = 63
 Height = 13

 Caption = 'Bytes/sector:'
 end
 object Label10: TLabel
 Left = 16
 Top = 56
 Width = 63
 Height = 13
 Caption = 'Free clusters:'
 end
 object Label11: TLabel
 Left = 16
 Top = 72
 Width = 40
 Height = 13
 Caption = 'Clusters:'
 end
 object SectorsPerClusterLabel: TLabel
 Tag = 2
 Left = 200
 Top = 24
 Width = 6
 Height = 13
 Alignment = taRightJustify
 Caption = '0'
 end
 object BytesPerSectorLabel: TLabel
 Tag = 2
 Left = 200
 Top = 40
 Width = 6
 Height = 13
 Alignment = taRightJustify
 Caption = '0'
 end
 object FreeClustersLabel: TLabel
 Tag = 2
 Left = 200
 Top = 56
 Width = 6
 Height = 13
 Alignment = taRightJustify
 Caption = '0'
 end
 object ClustersLabel: TLabel
 Tag = 2
 Left = 200
 Top = 72
 Width = 6
 Height = 13
 Alignment = taRightJustify
 Caption = '0'
 end
 object Bevel2: TBevel
 Left = 8
 Top = 96
 Width = 209
 Height = 9
 Shape = bsTopLine
 end
 object Label13: TLabel
 Left = 16
 Top = 104
 Width = 80

 Height = 13
 Caption = 'Total free space:'
 end
 object Label14: TLabel
 Left = 16
 Top = 120
 Width = 81
 Height = 13
 Caption = 'Total disc space:'
 end
 object FreeSpaceLabel: TLabel
 Tag = 2
 Left = 198
 Top = 104
 Width = 8
 Height = 13
 Alignment = taRightJustify
 Caption = '0'
 end
 object DiscSpaceLabel: TLabel
 Tag = 2
 Left = 200
 Top = 120
 Width = 6
 Height = 13
 Alignment = taRightJustify
 Caption = '0'
 end
 end
 object AboutBtn: TBitBtn
 Left = 248
 Top = 392
 Width = 75
 Height = 25
 Caption = '&About'
 TabOrder = 3
 OnClick = AboutBtnClick
 Glyph.Data = {
 F6000000424DF600000000000000760000002800000010000000100000000100
 0400000000008000
 80000080000000808000800000008000800080800000C0C0C000808080000000
 FF0000FF000000FFFF00FF000000FF00FF00FFFF0000FFFFFF00333333333333
 333333333333333B33338080888333333333F7077773333B3333F00000733333
 B333FFFFFFF333BBB33333333333333333338888888388888883F7FF7973F007
 0073FF7F8073F7000773FFFFFFF3FFFFFFF33333333333333333888888838888
 8883F7000773F9000003F7000973F0000003FFFFFFF3FFFFFFF3}
 end
 object SmallCheckBox: TCheckBox
 Left = 208
 Top = 40
 Width = 49
 Height = 17
 Alignment = taLeftJustify
 Caption = '&Small:'
 TabOrder = 1
 OnClick = FillInImage
 end
end

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for DI1.dpr
program di;

uses
 Forms,
 di1 in 'di1.pas' {DiscVolInfoForm},
 DiscUtil in 'DiscUtil.pas';

{$R *.RES}

begin
 Application.Initialize;
 Application.Title := 'Disc Volume Information';
 Application.CreateForm(TDiscVolInfoForm, DiscVolInfoForm);
 Application.Run;
end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

Delphi Books & Periodicals
by Jim Clokey - jclokey@mtgbcs.mt.lucent.com
Listed below are all English language Delphi books and periodicals of which I am aware. This list was last
updated on March 1st, 1997
Authors, publishers and others are invited to suggest books and periodicals for inclusion and to provide
information and comments. I will read all email and include [with credit] those comments which I use.
Unless you specifically request otherwise, your email address will be included when you are given credit.
Please send your comments and suggestions to Jim Clokey
The views expressed in this document are solely those of the author and do not represent the views of his
current or any past employer.

If you want the short version, here are my recommendations. If you want to know more about me, click
here.

Books
Beginning Delphi 2; Peter Wright

Borland Delphi How-To; Gary Frerking, Nathan Wallace, Wayne Niddery

Borland's Official No Nonsense Guide To Delphi 2; Michelle M. Manning

Building Internet Applications with Delphi 2; Davis Chapman

Delphi 32 Bit Programming Secrets; Tom Swan with Jeff Cogswell

Delphi - A Developers' Guide; Bill Todd & Vince Kellen, with Ray Novak and Brad Saenz

Delphi By Example; Blake Watson

Delphi Client Server Developer's Guide; Joseph D. Booth

Delphi Database Development; Ted Blue, John Kaster, Greg Leif, Loren Scott

Delphi Developer's Guide; Xavier Pacheco, Steve Teixeira

Delphi In Depth; Cary Jensen, Loy Anderson, Joseph Fung, Ann Lynworth, Mark Ostroff, Martin Rudy,
Robert Vivrette

Delphi Nuts and Bolts; Gary Cornell

Delphi Power Toolkit for Windows; Harold Davis

Delphi Programming Explorer; Neil Rubenking

Delphi Programming for Dummies; Neil Rubenking

Delphi Programming Problem Solver; Jeff Duntemann, Jim Mischel, Don Taylor

Delphi Super Bible; Paul B. Thurrott, Gary Brent, Richard Bagadazian, Steve Tendon

Delphi Unleashed; Charles Calvert

Delphi 2 Developer's Guide; Xavier Pacheco, Steve Teixeira

Delphi 2 Developer's Solutions; Nathan Wallace, Steve Tendon

Delphi 2 Unleashed; Charles Calvert

Delphi 3 Unleashed; Charles Calvert

Developing Custom Delphi Components; Ray Konopka

Developing Custom Delphi 3 Components; Ray Konopka

Developing With Delphi; Edward C. Weber, J. Neal Ford, Christopher R. Weber

Developing Windows Applications Using Delphi; Paul Penrod

Foundations of Delphi Development for Windows 95; Tom Swan

Instant Delphi Programming; Dave Jewell

Mastering Delphi; Mark Cantu

Mastering Delphi 2; Mark Cantu

Peter Norton's Guide to Delphi 2; Peter Norton, John Paul Mueller

Programming Delphi Custom Components; Fred Bulback

(The) Revolutionary Guide to Delphi 2; Brian Long, Bob Swart, Ewan McNab, Dave Jewell, Arjan
Jansen, etc

Secrets of Delphi 2; Ray Lischner

Teach Yourself Database Programming with Delphi in 21 Days; Nathan and Ori Gurewich

Teach Yourself ... Delphi; Devra Hall

Teach Yourself Delphi in 21 Days; Andrew J. Wozniewicz, Namir Shammas & Tom Campbell

(Special Edition) Using Delphi; Jon Matcho, David R. Faulkner et al.

Periodicals
Delphi Aquarium

Delphi Developer

Delphi Informant

The Delphi Magazine

Unofficial Newsletter for Delphi Users

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Beginning Delphi 2
Author(s): Peter Wright
Publisher: WROX Press
Copyright Date: 1995
ISBN: 1-874416-74-5
Extras: Disk
Price (US$): $36.95
Level: Beginner
Comments: I like the WROX Press books because they tend to be

information heavy and they also have a layout which appeals to
me. I have several Delphi protégés and this is the first book I
have them study.

Acquisition Priority: 1 [If you are a Beginner], 3 {All Others]

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Borland Delphi How-To
Author(s): Gary Frerking, Nathan Wallace, Wayne Niddery
Publisher: Waite Group Press
Copyright Date:
ISBN: 1-57169-019-0
Extras: CD-ROM
Price (US$): $39.95
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Borland's Official No Nonsense Guide to Delphi 2
Author(s): Michelle M. Manning
Publisher: SAMS Publishing
Copyright Date: 1996
ISBN: 0-672-30871-1
Extras: None
Price (US$): $25.00
Level: Beginner
Comments: If you have never used Delphi and are a novice with the IDE and

its drag and drop User Interface development method, this book
is for you. Written by an ex-Borland QA Engineer, it covers the
IDE in enough depth to get you started and is short enough to
actually read cover-to-cover.

Acquisition Priority: 1 [If you are a Beginner], 4 [All Others]

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Building Internet Applications with Delphi 2
Author(s): Davis Chapman
Publisher: Que
Copyright Date: 1996
ISBN: 0-7897-0732-2
Extras: CD-ROM
Price (US$): $49.99
Level: Intermediate to Advanced
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi 32 Bit Programming Secrets
Author(s): Tom Swan with Jeff Cogswell
Publisher: IDG Books
Copyright Date: 1996
ISBN: 1-56884-690-8
Extras: Floppy Disk
Price (US$): $44.99
Level: Advanced
Comments: I have just started reading this book [scanned it all and read first

chapter]. My first impressions are that it is a very advanced book
... it starts off with a discussion of Object Pascal which rapidly
gets very deep. Although! highly technical, the writing is lucid
and well-informed. I suspect this will become a classic along the
lines of the Calvert and Pacheco/Teixeira books. Not for the
faint-hearted but definitely worth your time and effort.

Acquisition Priority: 1

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi - A Developer's Guide
Author(s): Bill Todd, Vince Kellen with Ray Novak, Brad Saenz
Publisher: M & T Books
Copyright Date:
ISBN: 1-55851-455-4
Extras: CD-ROM
Price (US$): $44.95
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi By Example
Author(s): Blake Watson
Publisher: QUE
Copyright Date:
ISBN: 1-56529-757-1
Extras: none
Price (US$): $29.99
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Client Server Developer's Guide
Author(s): Joseph D. Booth
Publisher: M & T Books
Copyright Date: 1997
ISBN: 1-55851-492-9
Extras: CD-ROM
Price (US$): $44.95
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Database Development
Author(s): Ted Blue, John Kaster, Greg Leif, Loren Scott
Publisher: M & T Books
Copyright Date: 1996
ISBN: 1-55851-469-4
Extras: CD-ROM
Price (US$): $44.95
Level: Advanced
Comments: This is really a reference book for the Delphi Database

components, the BDE and Interbase Server. It provides
documentation that is not readily available elsewhere, such as,
the full BDE API in Pascal (rather than C/C++) with Error codes,
the full Interbase SQL reference and a host of other reference
information. This is not a book to read cover to cover, unless
you also read a dictionary that way. The book also covers
alternatives to the BDE.

Acknowledgment: My thanks to Alan Gauld for this review. Larry Bradshaw says "If
you are finding the Delphi BDE call documentation a bit sparse
or have had some difficulty translating the C++ version into
Pascal, we recommend this book. Did you know that there was
a TSession.CloseDatabase method ? Or that the Delphi 1.0
documentation was incorrect for the method and that rather than
take a string it takes a parameter of type TDatabase? If you had
this book you could find that on page 139, or through the
excellent index ! and cross reference. I cannot praise this book
highly enough. It does not simply reiterated the Borland docs,
but rather adds significant value with code samples for each
method or procedure documented. It is technical, but if you do
Delphi 1 or 2 database applications or BDE work, this is a must
have reference. My hat's off to the authors.

Acquisition Priority: 1 [Developers working on database applications] / 3 {All Others]

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Developer's Guide
Author(s): Xavier Pacheco, Stave Teixeira
Publisher: SAMS
Copyright Date:
ISBN: 0-672-30704-9
Extras: CD-ROM
Price (US$): $49.99
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi In Depth: Power Techniques from the Experts
Author(s): Cary Jensen, Loy Anderson, Joseph Fung, Ann Lynworth, Mark

Ostroff, Martin Rudy, Robert Vivrette
Publisher: Osborne McGraw-Hill
Copyright Date: 1996
ISBN: 0-07-882211-4
Extras: CD-ROM
Price (US$): $42.95
Level: Advanced
Comments: One of the best Delphi books. Some reviews have indicated

problems with the mix of writing styles that comes with any book
whose chapters are written by different authors. The strength
and depth of the material makes this a very minor concern.
Should be read cover to cover by the advanced developer.

Acquisition Priority: 2

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Nuts and Bolts: for Experienced Programmers
Author(s): Gary Cornell
Publisher: Osborne McGraw Hill
Copyright Date:
ISBN: 0-07-882203-3
Extras: None
Price (US$): $24.95
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Power Toolkit for Windows
Author(s): Harold Davis
Publisher: Ventana
Copyright Date:
ISBN: 1-56604-292-5
Extras: CD-ROM
Price (US$): $49.95
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Programming Explorer
Author(s): Jeff Duntemann, Jim Mischel, Don Taylor
Publisher: The Crinoline Group
Copyright Date:
ISBN: 1-883577-25-X
Extras: Floppy Disk
Price (US$): $39.99
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Programming for Dummies
Author(s): Neil Rubenking
Publisher: IDG Books
Copyright Date:
ISBN: 1-56884-200-7
Extras: None
Price (US$): $19.99
Level: Beginning
Comments: Larry Bradshaw says "If you don't have any other Delphi book,

we recommend Rubenking's book. This book is easy to read,
targeted to the not-so-technical audience and yet covers some
programming topics which are not to be found in either the
Borland documentation or most other references. It is cheap but
an excellent starter book for Delphi. Keep it handy though; we
think you will continue to refer to it (as we do).

Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Programming Problem Solver
Author(s): Neil Rubenking
Publisher:
Copyright Date:
ISBN: 1-56884-795-5
Extras:
Price (US$): $
Level:
Comments: Ahto Tanner [ahto@estpak.ee] commended this book to me with

the comment that it is a how-to book with code samples that
solve real-world problems.

Acquisition Priority: 3

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Super Bible
Author(s): Paul B. Thurrott, Gary Brent, Richard Bagadazian, Steve

Tendon
Publisher:
Copyright Date:
ISBN: 1-57169-027-1
Extras:
Price (US$): $54.99
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Unleashed
Author(s): Charles Calvert
Publisher: SAMS Publishing
Copyright Date:
ISBN: 0-672-30499-6
Extras: CD-ROM
Price (US$): $45.00
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi 2 Developer's Guide
Author(s): Xavier Pacheco and Steve Teixeria
Publisher: SAMS Publishing
Copyright Date: 1996
ISBN: 0-672-30914-9
Extras: CD-ROM
Price (US$): $59.99
Level: Intermediate to Advanced
Comments: An excellent book ... One of the few "must haves". It is marred

by several errors ... the authors would like to know if you
discover any errors. This book clearly belongs on your bookshelf
not just as a reference but as something to read cover to cover.

Acquisition Priority: 1

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi 2 Developer's Solutions: Cutting Edge How-Tos for the
Professional Developer
Author(s): Nathan Wallace & Steve Tendon
Publisher: Waite Group Press
Copyright Date: 1996
ISBN: 1-57169-071-9
Extras: CD-ROM
Price (US$): $59.99
Level: Intermediate to Advanced
Comments: I always purchase How-To books and am always disappointed

in the purchase ... UNTIL I have a question and find the answer
neatly worked out. This is one of the better how-to books. The
code examples are well done. I think the! basic issue in
determining if you should purchase this book is whether there is
one solution in the book that you can use today. In fact, I now
tend to go to my local bookstore when I have a problem and
look through the chapters of a how-to book, if the! book solves
the problem or at least points me in the right direction, I buy it.

Acquisition Priority: 3 [The highest rating I would give to a how-to book]

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi 2 Unleashed
Author(s): Charles Calvert
Publisher: SAMS Publishing
Copyright Date: 1996
ISBN: 0-672-30858-4
Extras: CD-ROM which includes much of the first edition accessible with

Adobe Acrobat Reader
Price (US$): $59.99
Level: Advanced
Comments: DELPHI UNLEASHED, by the same author, was one of the first

Delphi books published ... not surprising since the author was a
member of the Borland Delphi development team. This book,
surpasses the original in its depth. It delves into the innards of
Delphi in a way that is unmatched by any other author.

Acquisition Priority: 1

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi 3 Unleashed
Author(s): Charles Calvert
Publisher: SAMS Publishing
Copyright Date:
ISBN: 0-672-31015-5-4
Extras: CD-ROM which includes much of the first edition accessible with

Adobe Acrobat Reader
Price (US$): $59.99
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Developing Custom Delphi Components
Author(s): Ray Konopka
Publisher: Coriolis Group Books
Copyright Date: 1996
ISBN: 1-883577-47-0
Extras: CD-ROM
Price (US$): $39.99
Level: Advanced
Comments: Excellent, well written, well organized, easy to understand and

usable examples, good learning tool. Since I assume that
virtually every advanced developer will be building components
[in fact, this is one of the tests of being! an advanced developer]
this is an absolutely necessary book.

Acquisition Priority: 1

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Developing Custom Delphi 3 Components
Author(s): Ray Konopka
Publisher:
Copyright Date:
ISBN: 1-57610-112-6
Extras:
Price (US$): $49.99
Level: Advanced
Comments: Excellent, well written, well organized, easy to understand and

usable examples, good learning tool. Since I assume that
virtually every advanced developer will be building components
[in fact, this is one of the tests of being! an advanced developer]
this is an absolutely necessary book.

Acquisition Priority: 1

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Developing with Delphi: Object Oriented techniques
Author(s): Edward C. Weber, J. Neal Ford, Christopher R. Weber
Publisher: Prentice Hall PTR
Copyright Date: 1996
ISBN: 0-13-378118-6
Extras: Floppy Disk
Price (US$): $29.95
Level: Beginning to Intermediate
Comments: This is very much a book like Mastering Delphi and similar

works ... with a big BUT. The approach here is object-oriented
and it discusses the Delphi IDE and Object Pascal from that
viewpoint. It is not as complete in its cove! rage of Delphi
features as the longer books, but it is a good introduction to the
object-oriented nature of Delphi.

Acquisition Priority: 2

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Developing Windows Applications Using Delphi
Author(s): Paul Penrod
Publisher: John Wiley & Sons
Copyright Date:
ISBN: 0-471-11017-5
Extras: None
Price (US$): $29.95
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Foundations of Delphi Development for Windows 95
Author(s): Tom Swan
Publisher: IDG Books
Copyright Date:
ISBN: 1-56884-347-X
Extras: CD-ROM
Price (US$): $39.99
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Instant Delphi Programming
Author(s): Dave Jewell
Publisher: WROX Press
Copyright Date:
ISBN: 1-874416-57-5
Extras: Floppy Disk
Price (US$): $24.95
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Mastering Delphi
Author(s): Marco Cantu
Publisher: Sybex
Copyright Date: 1995
ISBN: 0-7821-1739-2
Extras: CD-ROM
Price (US$): $49.99
Level: All
Comments: This is a 1450 page tome that tries to cover all of Delphi. I

bought it when it first came out, read 3 chapters, skimmed 6
more and have not touched it since. I do not think a library
needs more than one of this type of book and then only when
starting with Delphi. I would select either this one [or a similar
book] based on personal preference for layout and writing style.

Acquisition Priority: 2

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Mastering Delphi 2
Author(s): Marco Cantu
Publisher: Sybex
Copyright Date:
ISBN:
Extras:
Price (US$): $
Level:
Comments: Alan Gauld says "I got this as an extra to the Delphi Developer's

Guide book. It has paid for itself in several ways ... e.g.: the
Media Player "! Play" method does not work properly and the
book gives a work around which involves sending a
MouseDown / MouseUp combination to the right screen
coordinates using PostMessage. Its a good beginner all purpose
guide and alternative to the manuals.

Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Peter Norton's Guide to Delphi 2
Author(s): Peter Norton and John Paul Mueller
Publisher: SAMS Publishing
Copyright Date: 1996
ISBN: 1-672-30898-3
Extras: CD-ROM
Price (US$): $49.99
Level: Beginner to Intermediate
Comments: This is a 750 page tome that tries to cover much of Delphi. For

my development work, some of the topics can be useful. I do not
like the code listings in blue type since they are hard to copy for
ease of reference and hard to ! read when working at the
computer. It does have a very good tear out page in front which
provides an easy reference to Delphi Keyboard Shortcuts,
Windows 95 Keyboard Shortcuts, Form Design Keys and Mouse
Movement Keys in the Editor as well as some Handy! Editor
Tidbits. Larry Bradshaw says "An excellent reference for all
manner of technical menu items such as Help files, Install sets,
OLE Automation, Creation Order, Delphi on a LAN. I like the
overview of the Windows 95 Server Architecture on page 508.
We use this book, oddly, when no other reference will suffice ...
and it has become one of the look-there-first references in our
office.

Acquisition Priority: 3

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Programming Delphi Custom Components
Author(s): Fred Bulback
Publisher:
Copyright Date:
ISBN:
Extras:
Price (US$): $
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
(The) Revolutionary Guide to Delphi 2
Author(s): Brian Long, Bob Swart, Ewan McNab, Dave Jewell, Arjan

Jansen, etc.
Publisher: WORX Press
Copyright Date:
ISBN: 1-874416-67-2
Extras: CD-ROM
Price (US$): $49.95
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Secrets of Delphi 2
Author(s): Ray Lischner
Publisher: Waite Group
Copyright Date: 1996
ISBN: 1-57169-026-3
Extras: CD-ROM
Price (US$): $49.99
Level: Advanced
Comments: This book [along with several others] is one of the most valuable

books for the advanced Delphi developer. It is packed with
information you can find nowhere else. It is the only place you
can find complete descriptions for component messages and
Delphi streams. Acknowledgment: My thanks to John M. Miano
for the review.

Acquisition Priority: 1 [Advanced Developers] / 3 [Others]

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Teach Yourself Database Programming with Delphi in 21 Days
Author(s): Nathan & Ori Gurewich
Publisher: SAMS Publishing
Copyright Date:
ISBN: 0-672-30851-7
Extras: CD-ROM
Price (US$): $39.99
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Teach Yourself ... Delphi
Author(s): Devera Hall
Publisher: MIS Press
Copyright Date:
ISBN: 1-55828-390-0
Extras: Floppy Disk
Price (US$): $27.95
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Teach Yourself Delphi in 21 Days
Author(s): Andrew J. Wozniewicz, Namir Shammas, Tom Campbell
Publisher: SAMS Publishing
Copyright Date:
ISBN: 0-672-30997-1
Extras: None
Price (US$): $29.99
Level: Beginning
Comments: Based on comments from Richard Tefler

[richard.telfer@gecm.com] ... I have been using this to learn
Delphi 1 and have so far done the first 7 days plus day 21
(DLLs). It comes from the SAMS Borland Press series so
presumably Borland endorses it. The book does what it claims
to do ... teaches you Delphi in a finite time. Day manes that ...
most of a work day not a couple of hours. Some of the
descriptions could be shortened by referring back to earlier ones
but the book generally gives a longer and more detailed
explanation to aid clarity.

Acquisition Priority: 1 [If you are a Beginner]

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
(Special Edition) Using Delphi
Author(s): Jon Matcho, David R. Faulkner et al.
Publisher: QUE
Copyright Date: 1995
ISBN: 1-56529-823-3
Extras: None
Price (US$): $29.99
Level:
Comments:
Acquisition Priority:

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Delphi Informant
Frequency: Monthly
Extras: Web Site with all code available for download
Price (US$): $49.95 per year
Address: Informant Communications Group Inc., 10519 E. Stockton Blvd.,

Suite 142, Elk Grove, Ca 95624-9704
URL: http://www.informant.com
Comments: Excellent, slightly less technical than Delphi Magazine and a bit

more informal in its writing style.
Acquisition Priority: 1

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
(The) Delphi Magazine
Frequency: Monthly
Extras: Disk with all code from each issue included in magazine
Price (US$): $140.00 per year
Address: The Delphi magazine, iTEC, 9a London Road, Bromley, Kent

BR1 1BY, England
U.S. Address: The Delphi magazine [USA], RR1, Box 6020, Waterbury Center,

VT 05677
Comments: Excellent and technical, probably the best in the industry from a

technical viewpoint. Tight, crisp writing style.
Acquisition Priority: 1

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Unofficial Newsletter for Delphi Users
Frequency: Irregular but about one issue every 6 weeks. Electronically

distributed.
Extras: Available in Help format or HTML format.
Price (US$): $FREE ... Yes Free
URL: http://www.informant.com/undu/index.htm (Use this to

download)
Comments: Published, edited and mostly written by Robert Vivrette. Not as

many articles per issue as the commercial magazines. Articles
are short and address specific issues in a thorough manner.

Acquisition Priority: 1

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

RECOMMENDED DELPHI BOOKS & PERIODICALS
The Delphi newsgroups continually have postings asking for recommendations on Delphi books and
periodicals. This set of pages is an effort to provide a comprehensive and annotated list of all books and
periodicals relevant to the Delphi developer. The list will be updated until all current books and periodicals
are included and then as necessary when new books and periodicals are published.

For the ADVANCED Delphi Developer:

Books
Code Complete

Delphi 32 Bit Programming Secrets

Delphi 2 Developer's Guide

Delphi In Depth

Delphi Unleashed 2

Developing Custom Delphi Components

Secrets Of Delphi 2

Periodicals
Unofficial Newsletter for Delphi Users

Delphi Magazine, The

Delphi Informant

For the BEGINNING to INTERMEDIATE Delphi Developer:

Books
Guidelines for Enterprise-Wide GUI Design

Beginning Delphi 2

Borland's Official No Nonsense Guide to Delphi 2

Periodicals
Unofficial Newsletter for Delphi Users

Delphi Informant

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
About Jim Clokey
As a Senior Software Engineer, I have been working with Delphi since version 1.0 [beta 3]. I work as an
on-site consultant for organizations involved with designing and building major client-server and desktop
applications.

In addition to writing Delphi code, my expertise is in application architecture, GUI design, standards
development, test design development and project management.

Contact Information
Permanent Email: master@pipeline.com
Current Assignment: jclokey@mtgbcs.mt.lucent.com
Voice - Current Assignment: 908-957-2607
Voice Mail: 610-670-7787
Pager: 800-675-0271 [enter area code and number and the # key]
Fax - Current Assignment: 908-957-5604

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

How To Be Outstanding in Your Field with TFieldPanel
by Emmanuel Fayet - 100333.2250@compuserve.com
If you need a quick way to display or collect an address or other data, you can now drop a TFieldPanel on
a form and initialize the Fields property with the names of the fields you want. For example:

Name
Address
Phone Number

Now run the project and you will get a form with those field names, and an edit box after each. It might
look something like this after typing in some sample values:

When you need to retrieve the data that has been entered, you just look back at the Fields property. The
format of each field is <field name>=<fieldvalue>. The button click method in this sample application
shows how it is done:

procedure TForm1.BitBtn1Click(Sender: TObject);
var
 i : integer;
 s : string;
begin
 s:= '';
 With FieldPanel1.Fields do
 for i:= 0 to Count-1 do
 s:= s + Strings[i] + #13;
 ShowMessage(s);
end;

I hope you find TFieldPanel useful in your applications. If you improve it, please let us know. I see two
natural extensions of the component: a DB version that will read and write fields from a database blob
field, and an other version that will use formatted edit controls (date, money, ..)

Source to TFieldPanel

Return to The Component Cookbook

Return to Front Page

     The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for TFldPanel
unit Fldpanel;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, ExtCtrls, StdCtrls;

type
 TFieldPanel = class(TPanel)
 private
 FFields: TStrings;
 FFieldsName: TStrings;
 FFieldsValue: TStrings;
 Fedits: TStrings;
 Flabels: TStrings;
 FScrollBar: TScrollBar;
 FTopIndex: integer;
 procedure Display;
 procedure SetTopIndex(const Value: integer);
 procedure ScrollBarScroll(Sender: TObject; ScrollCode: TScrollCode; var ScrollPos:
Integer);
 protected
 procedure CreateWnd; override;
 procedure SetFields(value: TStrings);
 procedure WMSize(var Message: TWMSize); message WM_SIZE;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 published
 property Fields: TStrings read FFields write SetFields;
 end;

 TFieldPanelEdit = class(TEdit)
 private
 procedure CNKeyDown(var Message: TWMKeyDown); message CN_KEYDOWN;
 procedure CMEnter(var Message: TCMEnter); message CM_ENTER;
 procedure CMExit(var Message: TCMExit); message CM_EXIT;
 procedure UpdateValue;
 end;

procedure Register;

implementation

procedure TFieldPanelEdit.UpdateValue;
begin
 with TFieldPanel(Parent) do
 begin
 FFieldsValue.Strings[FTopIndex+self.Tag]:= self.Text;
 FFields.Strings[FTopIndex+self.Tag]:= FFieldsName.Strings[FTopIndex+self.Tag] +
'=' + self.Text;
 end;
end;

procedure TFieldPanelEdit.CMExit(var Message: TCMExit);
begin
 UpdateValue;
end;

procedure TFieldPanelEdit.CMEnter(var Message: TCMEnter);
begin
 with TFieldPanel(Parent) do
 FScrollBar.Position:= FTopIndex+self.Tag;

 inherited;
end;

procedure TFieldPanelEdit.CNKeyDown(var Message: TWMKeyDown);
begin
 with TFieldPanel(Parent) do
 begin
 if (Message.CharCode = VK_TAB) and (GetKeyState(VK_SHIFT) >=0) then
 begin
 if (self.TabOrder=FLabels.Count-1) and
 (FLabels.Count+FTopIndex<FFields.Count) then
 begin
 UpdateValue;
 SetTopIndex(FTopIndex+1);
 FScrollBar.Position:= FTopIndex+self.Tag;
 Message.Result:=1;
 Exit;
 end;
 end;

 if (Message.CharCode = VK_TAB) and (GetKeyState(VK_SHIFT) <0) then
 begin
 if (self.TabOrder=0) and (FTopIndex<>0) then
 begin
 UpdateValue;
 SetTopIndex(FTopIndex-1);
 FScrollBar.Position:= FTopIndex+self.Tag;
 Message.Result:= 1;
 Exit;
 end;
 end;
 end;

 inherited;
end;

constructor TFieldPanel.Create(AOwner: TComponent);
begin
 inherited Create(aOwner);
 ControlStyle:= ControlStyle - [csAcceptsControls, csSetCaption];

 bevelOuter:= bvLowered;
 caption:= '';

 FFields:= TStringList.Create;
 FFieldsName:= TstringList.Create;
 FFieldsValue:= TStringList.Create;

 Flabels:= TStringList.Create;
 Fedits:= TStringList.Create;
 FScrollBar:= TScrollBar.Create(self);
 FTopIndex:= 0;
end;

procedure TFieldPanel.CreateWnd;
begin
 inherited CreateWnd;

 Display;
end;

destructor TFieldPanel.Destroy;
begin
 FFields.Free;
 FFieldsName.Free;
 FFieldsValue.Free;

 Flabels.Free;
 Fedits.Free;
 FScrollBar.Destroy;

 inherited Destroy;
end;

procedure TFieldPanel.SetFields(value: TStrings);
begin
 FFields.Assign(Value);
 Display;
end;

procedure TFieldPanel.WMSize(var Message: TWMSize);
begin
 if (csDesigning in ComponentState) then
 Display;
end;

procedure TFieldPanel.SetTopIndex(const Value: integer);
var i: integer;

begin
 if (Value>=0) and (FTopIndex<>value) and (FLabels.Count+Value-1<FFields.Count) then
 begin
 FTopIndex:= Value;
 for i:=0 to FLabels.Count-1 do
 TLabel(FLabels.Objects[i]).Caption:= FFieldsName.Strings[i+FTopIndex]+':';

 for i:=0 to FEdits.Count-1 do
 TFieldPanelEdit(FEdits.Objects[i]).Text:= FFieldsValue.Strings[i+FTopIndex];
 end;
end;

procedure TFieldPanel.ScrollBarScroll(Sender: TObject; ScrollCode: TScrollCode; var
ScrollPos: Integer);
begin
 SetTopIndex(ScrollPos);
end;

procedure TFieldPanel.Display;
var Label1: TLabel;
 Edit1: TFieldPanelEdit;
 i, p, widthLabel, maxLabel, leftLabel, topLabel, heightLabel, heightInterLabel,
 widthScrollBar: integer;
 bShowScrollBar: boolean;

begin
 while FLabels.Count<>0 do
 begin
 (FLabels.Objects[0] as TLabel).Destroy;
 FLabels.Delete(0);
 end;
 while FEdits.Count<>0 do

 begin
 (FEdits.Objects[0] as TFieldPanelEdit).Destroy;
 FEdits.Delete(0);
 end;

 FFieldsName.Clear;
 FFieldsValue.Clear;
 for i:=0 to FFields.Count-1 do
 begin
 p:= pos('=',FFields.Strings[i]);
 if p<>0 then
 begin
 FFieldsName.Add(copy(FFields.strings[i], 1, p-1));
 FFieldsValue.Add(copy(FFields.strings[i], p+1, length(FFields.Strings[i])-
p));
 end
 else
 begin
 FFieldsName.Add(FFields.strings[i]);
 FFieldsValue.Add('');
 FFields.strings[i]:=FFields.strings[i]+'=';
 end;
 end;

 heightInterLabel:= 8;
 heightLabel:= Canvas.TextHeight('W');
 widthLabel:= 0;
 for i:=0 to FfieldsName.Count-1 do
 if Canvas.TextWidth(FFieldsName.Strings[i]+':')>widthLabel then
 WidthLabel:=Canvas.TextWidth(FfieldsName.Strings[i]+': ');

 leftLabel:= 2;
 topLabel:= heightInterLabel+1;
 widthScrollBar:= GetSystemMetrics(SM_CXVSCROLL);
 maxLabel:= (Height - topLabel) div (heightLabel + topLabel);
 if maxLabel>FfieldsName.count then maxLabel:= FFieldsName.count;

 if (maxLabel<FFieldsName.count) and (FFieldsName.count>0) then bShowScrollBar:=
true else bShowScrollBar:= false;
 if bShowScrollBar then
 begin
 FScrollBar.Parent:= self;
 FScrollBar.Kind:= sbVertical;
 FScrollBar.Width:= widthScrollBar;
 FScrollBar.Height:= Height-1;
 FScrollBar.left:= width-FScrollBar.width-1;
 FScrollBar.top:= 1;
 FScrollBar.Min:= 0;
 FScrollBar.Max:= FfieldsName.Count-1;
 FScrollBar.OnScroll:= ScrollBarScroll;
 FScrollBar.Visible:= true;
 end
 else
 begin
 FScrollBar.Parent:= self;
 FScrollBar.left:= 0;
 FScrollBar.top:= 0;
 FScrollBar.Width:= 0;
 FScrollBar.Height:= 0;
 FScrollBar.Visible:= false;
 end;

 for i:=0 to maxLabel-1 do

 begin
 label1:= TLabel.Create(self);
 label1.Parent:= self;
 label1.Left:= leftLabel;
 label1.Top:= topLabel;
 label1.Caption:= FfieldsName.Strings[i]+':';
 FLabels.AddObject(FfieldsName.Strings[i], Label1);

 Edit1:= TFieldPanelEdit.Create(self);
 Edit1.Parent:= self;
 Edit1.Left:=leftLabel+widthLabel;
 Edit1.Top:=topLabel;
 if not bShowScrollBar then Edit1.Width:= Width-((2*LeftLabel)+widthLabel)
 else Edit1.Width:= Width-((2*LeftLabel)
+widthLabel+widthScrollBar);
 Edit1.TabStop:= true;
 Edit1.TabOrder:= i;
 Edit1.Tag:= i;
 Edit1.Text:= FFieldsValue.Strings[i];
 FEdits.AddObject(FfieldsName.Strings[i], Edit1);

 topLabel:= topLabel + heightLabel + heightInterLabel;
 end;
end;

procedure Register;
begin
 RegisterComponents('Examples', [TFieldPanel]);
end;

end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

Keeping Form Aspect Ratio
By Grahame Marsh - grahame.s.marsh@corp.courtaulds.co.uk
In UNDU Issue #17 I showed how I limited a form to a square shape by intercepting the Win 95
WM_Sizing message.    I was distracted enough by the usefulness of this to write a component which,
when placed on a form, limits the form's shape to a given aspect ratio.

To create a component which influences the form on which it is placed you have to intercept the form's
messages in the component.    Here is the shell code for this.

You are simply inserting a new WndProc for the original WndProc.    The only twist is the need to use
MakeObjectInstance to convert a method pointer (which can't be passed to the API) into a pointer (which
can be).

The two example components which use this shell are TAspect which can control a forms shape and
TMinMax which can control the minimum and maximum size a form can be sized to under a variety of
conditions.    You need to find WM_Sizing and WM_GetMinMaxInfo in the API help file to understand how
these components work and what the properties are for.

Here's two palette bitmaps for you to clip and use in your DCR file:

TAspect:

TMinMax:

Have Fun!

Source for Aspect.pas

Source for MinMax.pas

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
A Bit More About Previous Instances
by Robert Vivrette - RobertV@compuserve.com
In Issue #16 of UNDU, I presented an article about limiting multiple instances of a program in Delphi

It turns out there is one additional issue that needs addressing… Using the source in issue #16, if you run
an application, then minimize it, then try to launch it again, it restores the original copy (as it should).
However, you can not then re-minimize the application. It just ignores you.

The problem stems from the fact that there is a hidden application window floating around. The
applications MainForm is a child of this window. When you restore just the main form, the application still
thinks it's minimized. Then when you click on the minimize button of the main form, the application says
"forget it... I am already minimized". The solution is that the application needs to be restored instead of
the main form being restored. When you are searching for a second instance of the application, you really
should be looking for the application window and not the main form window. However, it can be done the
latter way also. Here is a modified example of the DPR source that shows how this can be done to make
the technique work correctly.
program Project0;
uses
 Windows,
 Forms,
 Unit0 in 'Unit0.pas' {Form1};

var
 Handle1 : LongInt;
 Handle2 : LongInt;

{$R *.RES}

begin
 Application.Initialize;
 Handle1 := FindWindow('TForm1',nil);
 if handle1 = 0 then
 begin
 Application.CreateForm(TForm1, Form1);
 Application.Run;
 end
 else
 begin
 {Obtain handle to owner of Main Form. This is the application window}
 Handle2 := GetWindow(Handle1,GW_OWNER);
 {Hide application window to avoid zoom effect}
 ShowWindow(Handle2,SW_HIDE);
 {Restore application window}
 ShowWindow(Handle2,SW_RESTORE);
 {Set Main Form as foreground window}
 SetForegroundWindow(Handle1);
 end;
end.

Note that we first find the Main form window, then use GetWindow to find its owner. Then we send the
restore to that window, and then set the main form as the foreground window. When the restore goes to
the application window, it restores the main form. I am sending a hide to the application first to avoid a
zoom effect from the Win95 task bar. If you comment out the line with SW_Hide, you will see what I
mean.

Also keep in mind that this technique works correctly only outside of the Delphi IDE. When you try to run
an application from the IDE, the design-time copy of the main form is still around and Windows see's that

as another instance of the program according to our test.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Borland's Solution to Form Resolution
Last issue, I posted a reader question concerning form resolution. The question centered around the fact
that you would want your application to look essentially the same regardless of what the screen resolution
is and/or the system font size (small fonts vs large fonts).

Although I got quite a few responses on this issue, the one that I think explains the issues best is a tech
sheet that Borland itself put out. It covers the issues in some depth so it will help readers see a little more
about all the factors that come into play.

Some of the solutions that were sent in went to great lengths to change the form's font size to be the
same visual size regardless of the setting of large fonts and small fonts. Big mistake in my opinion. A key
reason behind the use of Small fonts vs. Large fonts is that a user might be visually impaired and writing
code to force a font to be a specific height despite the system font size setting could cause problems. It is
better to design the interface such that differing resolutions and font size have as little impact on the
program (and user) as possible.

Anyway, here is a complete reprint of Borland's tech sheet #2861… You can find all of their tech sheets
on the CompuServe Delphi forum in the "From Borland" file section.

#2861 - Form display with different screen resolutions.
When designing forms, it is sometimes helpful to write the code so that the screen and all of its objects
are displayed at the same size no matter what the screen resolution is.    Here is some code to show how
that is done:
implementation
const
 ScreenWidth: LongInt = 800; {I designed my form in 800x600 mode.}
 ScreenHeight: LongInt = 600;

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 scaled := true;
 if (screen.width <> ScreenWidth) then
 begin
 height := longint(height) * longint(screen.height) div ScreenHeight;
 width := longint(width) * longint(screen.width) div ScreenWidth;
 scaleBy(screen.width, ScreenWidth);
 end;
end;

Then, you will want to have something that checks to see that the font sizes are OK.    You can iterate
over each child control's font to adjust its size as necessary.    This can be done as follows:
type
 TFooClass = class(TControl); { needed to get at protected }
 { font property }

var
 i: integer;
begin
 for i := ControlCount - 1 downto 0 do
 TFooClass(Controls[i]).Font.Size :=
 (NewFormWidth div OldFormWidth) *
 TFooClass(Controls[i]).Font.Size;
end;

Note:    The following are issue to bear in mind when scaling Delphi applications (forms) on different
screen resolutions:

Decide early on in the form design stage whether you're going to allow the form to be scaled or not.    The
advantage of not scaling is that nothing changes at runtime.    The disadvantage of not scaling is that
nothing changes at runtime (your form may be far too small or too large to read on some systems if it is
not scaled).

If you're NOT going to scale the form, set Scaled to False. Otherwise, set the Form's Scaled property to
True.

Set AutoScroll to False.    AutoScroll = True means 'don't change the form's frame size at runtime' which
doesn't look good when the    form's contents do change size.

Set the form's font to a scaleable TrueType font, like Arial.      MS San Serif is an OK alternate, but
remember that it is still a    bitmapped font.    Only Arial will give you a font within a pixel of the desired
height.    NOTE: If the font used in an application is not installed on the target computer, then Windows will
select an    alternative font within the same font family to use instead.    This font may not match the same
size of the original font any may cause problems.

Set the form's Position property to something other than poDesigned.    poDesigned leaves the form
where you left it at design time, which for me always winds up way off to the left on my 1280x1024 screen
-    and completely off the 640x480 screen.

Don't crowd controls on the form - leave at least 4 pixels between    controls, so that a one pixel change in
border locations (due to    scaling) won't show up as ugly overlapping controls.

For single line labels that are alLeft or alRight aligned, set AutoSize to True.    Otherwise, set AutoSize to
False.

Make sure there is enough blank space in a label component to allow for font width changes - a blank
space that is 25% of the length of the current string display length is a little too much, but safe. (You'll
need at least 30% expansion space for string labels if you    plan to translate your app into other
languages) If AutoSize is    False, make sure you actually set the label width appropriately.    If AutoSize is
True, make sure there is enough room for the label    to grow on its own.

In multi-line, word-wrapped labels, leave at least one line of blank space at the bottom.    You'll need this
to catch the overflow when the text wraps differently when the font width changes with scaling. Don't
assume that because you're using large fonts, you don't have to allow for text overflow - somebody else's
large    fonts may be larger than yours!

Be careful about opening a project in the IDE at different resolutions.    The form's PixelsPerInch property
will be modified as soon as the form is opened, and will be saved to the DFM if you save the project. It's
best to test the app by running it standalone, and edit the form at only one resolution. Editing at varying
resolutions and font sizes invites component drift    and sizing problems.

Speaking of component drift, don't rescale a form multiple times, at design time or a runtime.    Each
rescaling introduces roundoff errors which accumulate very quickly since coordinates are    strictly integral.
As fractional amounts are truncated off control's origins and sizes with each successive rescaling,    the
controls will appear to creep northwest and get smaller. If you want to allow your users to rescale the form
any number    of times, start with a freshly loaded/created form before each    scaling, so that scaling
errors do not accumulate.

Don't change the PixelsPerInch property of the form, period.

In general, it is not necessary to design forms at any particular resolution, but it is crucial that you review
their appearance at 640x480 with small fonts and large, and at a high-resolution with small fonts and
large before releasing your app.    This should be    part of your regular system compatibility testing
checklist.

Pay close attention to any components that are essentially    single-line TMemos - things like
TDBLookupCombo.    The Windows    multi-line edit control always shows only whole lines of text -    if the
control is too short for its font, a TMemo will show    nothing at all (a TEdit will show clipped text). For such 
components, it's better to make them a few pixels too large than to be one pixel too small and show not
text at all.

Keep in mind that all scaling is proportional to the difference    in the font height between runtime and
design time, NOT the pixel resolution or screen size.    Remember also that the origins of your controls will
be changed when the form is scaled - you can't very    well make components bigger without also moving
them over a bit.

DISCLAIMER: You have the right to use this technical information subject to the terms of the No-
Nonsense License Statement that you received with the Borland product to which this information
pertains.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

Speeding up Processing of Large Tables
by Duncan Campbell ("Dunk") - duncan@tvl.com
Recently I have been writing an app, working with large tables (10,000+ Records) containing many fields
(50+). I had a section of my program that required me to loop through a large number of records, updating
them as I went. For various reasons, the TQuery component was not appropriate for this situation, and I
was very dismayed by how slow the TTable seemed to be processing. I traced the speed problems down
to the fact that I had a number of calculated fields that were being re-calculated far too often, and came
up with a "quick and dirty" method of speeding things up, that you may find useful.
First of all, I create a global variable -gPROCESS_OK - of type Boolean which I initialize as TRUE.

In the "OnCalcFields" of my TTable, I put the following code:
If gPROCESS_OK then
 {code for calculated fields}

Then when I want to do my large process, I perform the following steps:
with myTable do
 try
 {this stops the user from noticing that anything is going on}
 DisableControls;
 {this turns OFF the calculated fields}
 gPROCCESS_OK := False;
 {perform process}
 finally
 {Turn calculated fields back on}
 gPROCESS_OK := TRUE;
 {and re-enable the data-aware controls}
 EnableControls;
 end;

As you can see, at the beginning of the try..finally block, I first disable all data-aware controls, and turn off
calculated fields processing. I then perform my loop before finally turning back on the calculated fields
and re-enabling data-aware controls.

I have found this method to be very useful in increasing performance when large numbers of records
need to be processed.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
SHFileOperation Revisited
by Robert Vivrette - RobertV@compuserve.com
Last issue, I discussed how to use the SHFileOperation command in the Win95 API to
copy/move/delete/rename files and to add system-level undo support to these actions.

However, I left out one little issue in the discussion. When you are assigning values to the pFrom and pTo
portions of the record structure, they need to by terminated with two nulls (#0) rather than just a single
null. These two record fields are used to specify source and destination file names, and they allow you to
input more than one filename on each. To use more than a single file name, you must make them a single
string, each terminated by a single null value, and then the entire string terminated with an additional null.
That way, the operation system knows where each file name ends and also knows when it has reached
the end of all the names. Even if you are using only a single name, it must end with two nulls or you get
all sorts of odd behaviors.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

How To Make Your EXE's Lighter!
by Eric Fortier - cfortier@clic.net
This quick tip is a way to trim down the size of you applications, and in my case, these changes enabled
me to cut down over 260K from one executable! I think everyone will benefit from this.
If you're like me, you build your own components, and add plenty of properties. What you should know is
that the properties of your component are stored in a file which is linked into the executable you create,
the *.DFM file. So, with careful programming you can have less properties stored in those DFM files! How
you ask? Well, VERY simple! consider this property:

published
 property MyCount: integer read FMyCount write FMyCount;

This property will always be saved in the DFM file. There are two ways to have Delphi think before saving
it, to see if it's really necessary. These ways are through the DEFAULT and STORED directives. First, if
your MyCount property is almost always zero, you can use this definition instead:

published
 property MyCount: integer read FMyCount write FMyCount DEFAULT 0;

and add this to the create method of your component:
constructor xx.Create...
begin
 inherited Create(AOwner);
 FMyCount:=0;
 ...
end;

This way, Delphi will check to see if the property is set to zero, and if so, it will not be saved to the DFM
file and it will "default" to 0 next time it loads.

You can also explicitly state if you want the property stored or not with the STORED keyword:
published
 property MyCount: integer read FMyCount write FMyCount STORED True;
 {or}
 property MyCount: integer read FMyCount write FMyCount STORED IsStored;
 (with IsStored being a procedure)

This way, you'll cut the size of your DFM file, and your executable. I cut almost all my DFM size in half,
and stripped more than 260K off my executable! Remember to load and save back the .DFM file for the
changes to appear!

There are also other ways to cut down the size of things. Another way, as suggested by another user, is to
make property names smaller. This has to be used with care however, because you might name a
property "BACK1" and not remember what it is after a while.

This same user also suggest to move the property to the PUBLIC declaration module of the component,
thus removing it entirely from the DFM file. This too has the side effect from removing it from the Object
Inspector, so you have to know it's there if you want to use it.

After using defaults for your properties, you might want to use the Delphi code editor to load a .DFM file to
take a look. There might be "residual" properties which are cluttering the file. By removing the unwanted,
orphaned properties (left over after the "Default" procedure) you will take out another slice off those DFM,
in the case of some components, I was able to scrape off 10-20 K.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Revision for TPageControl
by Grahame Marsh - Grahame.S.Marsh@corp.courtaulds.co.uk
An error crept into the destroy method of the TExPageControl in the article in issue #19 of UNDU.    I
didn't check to see if the FGlyphs property had been set before setting the OnChange property to nil to
remove the link.    It seems that I had only tested the component with it linked to a TImage which was my
main reason for writing the component in the first place.    Sorry, to anyone who suffered the great pile of
Access Violation errors you get with this bug!    There must be a moral to this story somewhere.

Anyway, here is what you need to change the destructor to solve the problem:
 destructor TExPageControl.Destroy;
 begin
 if Assigned (FGlyphs) then
 FGlyphs.OnChange := nil;
 FCanvas.Free;
 inherited Destroy;
 end;

Return to The Component Cookbook

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

Displaying Multi-Colored Text in a String Grid
by Paul Harding - 100046.2604@compuserve.com
Here is a tip you might find useful… namely how to display multi-colored text in a string grid.
As you may already know, if you wish to display text in a string grid, you can set the text of an individual
cell using:    StringGrid1.Cells[Col,Row] However, you can also display the text in each cell of the grid in
different colors, and for this tip I'll just demonstrate a simple way to alter the color of a cell's text just by
clicking on it.
Originally, I was going to demonstrate the technique by just making positive numbers black and negative
numbers red. However, the technique is far more powerful than this and there is a far simpler way of
showing whether a number in a cell is positive or negative: namely using the OnDrawCell event to look at
the cell's value and decide its color based off whether it is positive and negative.

But there is quite a bit more in this technique. What you can do, is use the string grid's Objects property to
store a color (or anything else) with each cell. Every cell on a grid has the ability to store a pointer to an
object. So, using this, we can actually store a number, by typecasting the number into a pointer like this:
Pointer(56745) and we can get the number back by typecasting the pointer like this:
LongInt(myPtrVariable);

Now, since colors are just LongInts, we can do this: Pointer(clRed), and we are halfway there.   

To access the pointer to the object in each cell, we just do this:
StringGrid1.Cells[col,row] := '7';
StringGrid1.Objects[col,row] := Pointer(clLime);

Now we have stored the text '7' in the cell, and the "value" of the color Lime Green in the cells' object
pointer.    When we come to draw the cell, we just use the pointer value to get the color we need.

The sample project demonstrates a string grid, and a button dropped onto a form. When the button is
clicked, the string grid gets filled with a random selection of numbers. Initially, all of the cell's Objects
properties are saved as Pointer(clBlack). But when you double-click on a cell, it randomly changes it to
one of 4 other colors.

When the grid draws its own cells, it has to know what color to use.    Using the OnDrawCell event, simply
retrieve the color from the object pointer, and use it to draw the text, and hey presto, you have a grid of
colored numbers!
We have cheated really, because we are not storing a "proper" object in the Objects property of the grid.   
If we HAD stored objects there, they would need to be freed up before the grid gets destroyed. Since we
haven't really stored objects in the grid, we'll just finish off by setting all our pointers back to nil in the

form's OnClose event.
Obviously this technique is a lot more powerful than just displaying random numbers in different colors.
Keep in mind that the Objects property for each cell can hold pretty much anything. The color we store
could indicate specific states for the cell. For example, in an accounting situation you might have numbers
that need authorization. You could mark them by changing their color to red and when the user selects
that cell and clicks on a "Authorize" button, the cell color changes to black. Also, since the Objects
property is storing pointers, you could keep pointers to some other object. Perhaps a bitmap that should
be used along with the number, or maybe even a pointer to some explanatory text.

The possibilities are endless!

Source Code For This Project

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

       

Printing Raw Data
by Philip Hibbs - 101621,1264
Reading UNDU#19, I was interested to see the solution for sending raw data to the printer. I myself had
this problem, but resolved it another way. I used the Windows API function SpoolFile like this:

iRet := SpoolFile('Generic / Text Only','LPT1',pcTitle,pcTempName);

where pcTempName is the name of the file to be sent to the printer. Note that this file will automatically be
deleted by the spooler, so be careful!

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Converting Delphi Source files to HTML
Announcement by Pieter Polak - PP@coas.com
Do you need to publish Delphi/Pascal source code on your web site? It can be quite a pain having to do
all that formatting by hand. But to simplify this job, we have created a tool which convert Pascal source
files into HTML with full syntax highlighting. This is a free tool, and can be found on
http://www.coas.com/pas2html or can de downloaded from the BDELPHI32 forum on Compuserve.

Currently I am working on a new version which will be available as a Delphi expert as well, so you can run
the conversion from within the IDE. In addition to the CGI version, an ISAPI version will become available
as well (to increase performance on Windows/NT servers running IIS). Also a version with a graphical
(windows) interface will become available within a short time.

Try it out and let me know what you think!

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Adding a History List to an InputQuery Box
by Gene Fowler - acorioso@ccnet.com
InputQueryEx is an InputQuery with a history list so you can recycle, or simply cycle through, past inputs.
This quick user-input collector that keeps its past, is a very useful thing to have on hand, whatever you
call it. This code was created for Delphi 1.0, although I expect that it wouldn't be too different in Delphi
2.0.

For those of you who are unfamiliar with InputQuery, this is what it looks like:

As you can see, it is just a simple input box that allows the user to specify a string value. The enhanced
InputQueryEx function, replaces the Edit box with a Combobox and allows you to specify history items for
the list. Here is what InputQueryEx looks like:

If you want to see an InputQueryEx among a number of InputQuerys, grab
ftp.coriolis.com/pub/Controls/dbdxpand.zip and unzip it. Two "hand-held" outrigger editors for Database
Desktop, MemoEdit and PictEdit will tumble out. If that's awkward but you have Kick Ass Delphi (Coriolis)
on a near-by shelf, the pictures are on pages 318-9 and the editors are on the disk.
InputQueryEx Source

The following is some sample code showing the use of InputQueryEx:
procedure TForm1.Button1Click(Sender: TObject);
var
 NewString: string;
 ClickedOK: Boolean;
 History : TStringList;
begin
 NewString := 'Default String';
 Label1.Caption := NewString;
 History := TStringList.Create;
 History.Add('History Item 1');
 History.Add('History Item 2');
 ClickedOK := InputQueryEx('Input Box', 'Prompt', NewString, History);
 if ClickedOK then { NewString contains new input

string }
 Label1.Caption := 'The new string is ''' + NewString + '''';
 History.Free;
end;

Obviously, this example doesnt really do anything with the history list, so you would probably want to
make the History string list a global variable and add new strings to it as you go. Even better, you would
probably want to save it to an INI file or the Registry if appropriate.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

"Is Someone Else Running?" - Revisited!
Editors Note: In Issue #19 of UNDU, Paul Harding presented an article on how to determine if another
application was running. This article was an extension of the technique used to determine if an application
already had an instance running (which was from issue #12). As you will see, the tip by Magnus Baeck
below shows a much simpler way to see if another (different) application is running. However, this tip will
not work as a way to limit multiple instances of the same program.
by Magnus Baeck - baeck@swipnet.se
There is a much easier solution to the 'Is Someone Else Running?' article in UNDU 19. Instead of
checking class names, why not just check is a certain EXE is running? The following code does the trick
with both D1 and D2:
function IsModuleRunning(ModuleName: string): Boolean;
{$IFDEF VER80}
var
 S: array [0..127] of Char;
{$ENDIF}
begin
{$IFDEF VER80}
 StrPCopy(S, ModuleName);
 IsModuleRunning := GetModuleHandle(S) <> 0;
{$ELSE}
 IsModuleRunning := GetModuleHandle(PChar(ModuleName)) <> 0;
{$ENDIF}
end;

The ModuleName parameter can also indicate a DLL. This method would of course fail if there were two
modules with the same name, but that would have to be very unusual.

Return to Tips & Tricks

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

Tip Of The Day
by Robby Walker - RobertAWalker@msn.com
You load up Windows 95 and the first thing you see is the welcome screen (if you haven't disabled it). The
welcome screen looks like this:

Wow! What a cool idea… So, how do I use it in my own applications? The best way is to develop a tip of
the day component. Of course another advantage is that you learn a lot by developing it. You become
more familiar with string lists and file access, and also learn how to wrap a form into a component. All of
these are key Delphi concepts.
There are two things needed for a tip of the day component: the form which displays the tips and the
component which displays the form.    Let's start with the form.

 There few key pieces that we will mainly discuss are the tip label, the "Show Tips at Startup" checkbox,
and the buttons.    When the form is created, it loads a tip file into a TStringList called Tips.    The tip file
format is very simple. The first line of the file is a True or False to indicate whether to show the tips or not.
Then after that is simply a list of all the tips, one tip per line. An example tip file might look like this:

True
You can get context-sensitive help by clicking on the help button.
Buttons captions that are gray indicate the button has been disabled.
Don't take candy from strangers.
Chocolate ice cream tastes really good.

When the first string is read, if it is 'True', then the show at startup checkbox is checked. If the string is
anything else, then the show at startup checkbox is cleared. Then, the first tip is displayed in the tip label
and the form opens and a tip is shown. At this point, the user has two courses of action. They may either
hit the Next Tip or the OK button.    Both of these events have one thing in common; they both advance to
the next tip.    The way this is done is by moving the first tip to the end of the tip list.    For instance, if you
had the list 1-2-3-4-5, and you moved 1 to the end, you would have 2-3-4-5-1. Since you wanted the next

tip, this moves it to the front position which is where the tip is read from. In the next button clicked event,
the tip at the front of the list is then displayed.    In the OK button clicked event, a few things are still left.   
The new show at startup status is written to the first line in the file.    Then, the tip list is destroyed and the
form is closed.    If after all of this talk about the form, you want to see it, here is it's source and form
source.

Source for TipBox

Source for the TipBox form

So, now we have a fully functional form.    Next we need a component to access the form with.    It is a
very simple component.    It is descended from TComponent because it is a non-visible component.    It
has only two properties: the name of the file which holds the tips and a read-only property which hold the
value of the show on startup checkbox.    It has one method, the procedure Execute.    Execute takes no
arguments but rather simply creates the tip form, passes the file name to the form, shows the form
modally, and then destroys the form.    The only other method in the unit is the register method which
registers the component onto the UNDU page.

Source for TipDlg

To use this component, simply place it on the form, and somewhere call the Execute method like this:
procedure TForm1.Button1Click(Sender: TObject);
begin
 TipOfTheDayDlg1.Execute;
end;

and abracadabra! A tip of the day form pops up onto your screen…

Return to The Component Cookbook
Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
InputQX.PAS Source
{ The InputQX unit, containing the InputQueryEx function for Borland's
 Delphi is Copyright (c) 1996 by Gene Fowler but may be used freely
 by the good folk shaping Delphi interfaces.

 InputQueryEx produces an Input dialog as InputQuery does, but the
 Edit is replaced by a Dropdown Combobox so that you have a history
 of previous inputs that you can reuse.

 This function is based mostly on Borland's InputQuery function in
 the DIALOGS.PAS unit of Delphi 1.0. This function was copied into
 this unit and used as the basis of the new InputQueryEx function.
 Changes that have been made from the original are noted.

 Want to see this "in action"? Assuming you're on-line (and have BDE
 installed), ftp://ftp.coriolis.com/Controls/dbdxpand.zip. This un-
 zips two "outrigger" editors to use with Database Desktop, MemoEdit
 and PictEdit. PictEdit has an InputQueryEx under the Full Image
 Editors button.

 -- Gene Fowler
}

unit InputQX;
{$S-,W-,R-}
{$C PRELOAD}

interface
uses Classes, Graphics, Controls, Buttons, StdCtrls, Forms, Dialogs;
function InputQueryEx(const ACaption, APrompt: string;
 var Value: string; var Values: TStringList): Boolean;

implementation
function InputQueryEx(const ACaption, APrompt: string;
 var Value: string; var Values: TStringList): Boolean;
var
 W : TForm;
 {Edit: TEdit;} {OLD}
 Combo : TComboBox; {NEW}
 i : Integer; {NEW}
 S : String; {NEW}
 L : TLabel;
 OKButton: TBitBtn;
 CancelButton: TBitBtn;
begin
 Result := False;
 W := TForm.Create(Application);
 try
 with W do
 begin
 BorderStyle := bsDialog;
 Ctl3D := True;
 Width := 280;
 Height := 160;
 Caption := ACaption;
 Font.Name := 'MS Sans Serif';
 Font.Size := 8;

 Font.Style := [fsBold];
 Position := poScreenCenter;

 L := TLabel.Create(W);
 with L do
 begin
 Parent := W;
 AutoSize := True;
 Left := 10;
 Top := 10;
 Caption := APrompt;
 end;
 {Edit := TEdit.Create(W); } {OLD}
 {with Edit do } {OLD}
 {begin } {OLD}
 { Parent := W; } {OLD}
 { Left := 10; } {OLD}
 { Top := L.Top + L.Height + 5; } {OLD}
 { Width := W.ClientWidth - 20; } {OLD}
 { MaxLength := 255; } {OLD}
 { Text := Value; } {OLD}
 { SelectAll; } {OLD}
 {end; } {OLD}
 {L.FocusControl := Edit; } {OLD}

 Combo := TComboBox.Create(W); {NEW}
 with Combo do {NEW}
 begin {NEW}
 Parent := W; {NEW}
 Left := 10; {NEW}
 Top := L.Top + L.Height + 5; {NEW}
 Width := W.ClientWidth - 20; {NEW}
 MaxLength := 127; {NEW}
 SelectAll; {NEW}
 Text := Value; {NEW}
 Combo.Items.Clear; {NEW}
 if Values.Count > 0 then {NEW}
 begin {NEW}
 For i := 0 to Values.Count - 1 do {NEW}
 begin {NEW}
 S := Values[i]; {NEW}
 Combo.Items.Add(S); {NEW}
 end; {NEW}
 if Combo.Items[0] <> Combo.text then {NEW}
 begin {NEW}
 Combo.Items.Insert(0, Combo.Text); {NEW}
 for i := 0 to Combo.Items.Count - 1 do {NEW}
 if Combo.Items[i] = Combo.Items[0] then {NEW}
 Combo.Items.Delete(i); {NEW}
 end {NEW}
 end {NEW}
 else {NEW}
 Combo.Items.Add(Combo.Text) {NEW}
 end; {NEW}
 L.FocusControl := Combo; {NEW}

 OKButton := TBitBtn.Create(W);
 with OKButton do
 begin
 Parent := W;
 Kind := bkOK;
 Style := MsgDlgButtonStyle;

 if not MsgDlgGlyphs then
 begin
 Glyph := nil;
 Margin := -1;
 end
 else Margin := 2;
 {Top := Edit.Top + Edit.Height + 10;} {OLD}
 Top := Combo.Top + Combo.Height + 10; {NEW}
 Width := 77;
 Height := 27;
 Left := (W.ClientWidth div 2) - (((OKButton.Width * 2) + 10) div 2)
 end;
 CancelButton := TBitBtn.Create(W);
 with CancelButton do
 begin
 Parent := W;
 Kind := bkCancel;
 Style := MsgDlgButtonStyle;
 if not MsgDlgGlyphs then
 begin
 Glyph := nil;
 Margin := -1;
 end
 else Margin := 2;
 Top := OKButton.Top;
 Width := 77;
 Height := 27;
 Left := OKButton.Left + OKButton.Width + 10;
 end;
 ClientHeight := OKButton.Top + OKButton.Height + 10;
 end;
 {if W.ShowModal = mrOK then } {OLD}
 {begin } {OLD}
 { Result := True; } {OLD}
 { Value := Edit.Text; } {OLD}
 {end; } {OLD}
 if W.ShowModal = mrOK then {NEW}
 begin {NEW}
 Result := True; {NEW}
 Value := Combo.Text; {NEW}
 if Combo.Items[0] <> Combo.Text then {NEW}
 Combo.Items.Insert(0, Combo.Text); {NEW}
 for i := 1 to Combo.Items.Count - 1 do {NEW}
 if Combo.Items[i] = Combo.Items[0] then {NEW}
 Combo.Items.Delete(i); {NEW}
 Values.Clear; {NEW}
 For i := 0 to Combo.Items.Count - 1 do {NEW}
 begin {NEW}
 S := Combo.Items[i]; {NEW}
 Values.Add(S); {NEW}
 end; {NEW}
 end; {NEW}
 finally
 W.Free;
 end;
end;
end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for Colored String Grids
unit Unit1;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, Grids;

type
 TForm1 = class(TForm)
 StringGrid1: TStringGrid;
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 procedure StringGrid1DrawCell(Sender: TObject; Col, Row: Longint;
 Rect: TRect; State: TGridDrawState);
 procedure FormClose(Sender: TObject; var Action: TCloseAction);
 procedure StringGrid1DblClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var
 C, R: Integer;
 Value: Integer;
begin
 {fill the string grid with random integer values}
 Randomize;
 for C := 1 to StringGrid1.ColCount-1 do
 for R := 1 to StringGrid1.RowCount-1 do
 begin
 Value := Random(10) - 5;
 StringGrid1.Cells[C,R] := IntToStr(Value);
 StringGrid1.Objects[C,R] := Pointer(clBlack);
 end;
end;
procedure TForm1.StringGrid1DrawCell(Sender: TObject; Col, Row: Longint;
 Rect: TRect; State: TGridDrawState);
const
 LM = 3; {each indiviual cell's left margin}
 TM = 2; {each indiviual cell's top margin}
var
 ptr: Pointer;
begin
 {use whatever color is stored in the object's pointer}
 ptr := StringGrid1.Objects[Col, Row];
 StringGrid1.Canvas.Font.Color := LongInt(ptr);
 {let'd draw the fixed rows and the fixed columns in silver}
 if gdFixed in State then
 StringGrid1.Canvas.Brush.Color := clSilver;

 {let's draw the highlight in the following way when the cell is selected}
 if gdSelected in State then
 begin
 StringGrid1.Canvas.Brush.Color := clHighlight;
 StringGrid1.Canvas.Font.Color := clHighlightText;
 end;
 {finally, do the actual cell drawing}
 StringGrid1.Canvas.TextRect(Rect, Rect.Left + LM, Rect.Top + TM,
StringGrid1.Cells[col,row]);
end;
procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
var
 C, R: Integer;
begin
 for C := 1 to StringGrid1.ColCount-1 do
 for R := 1 to StringGrid1.RowCount-1 do
 begin
 {make all the grid's objects point to nothing}
 StringGrid1.Objects[C, R] := nil;
 {if we had stored objects in the grid, we should free them like this:
 StringGrid1.Objects[C, R].Free;}
 end;
end;
procedure TForm1.StringGrid1DblClick(Sender: TObject);
begin
 With StringGrid1 do
 Case Random(4) of
 0 : Objects[Col,Row] := Pointer(clRed);
 1 : Objects[Col,Row] := Pointer(clLime);
 2 : Objects[Col,Row] := Pointer(clBlue);
 3 : Objects[Col,Row] := Pointer(clFuchsia);
 end;
end;
end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997

Questions (And Answers) From UNDU Readers
I often get a wide variety of emailed questions from readers of UNDU. Some of them have been quite
interesting and the solutions are equally interesting. Anyway, I figured "Why not let everyone help on the
solution?"
Each month I will present a few questions here that readers have submitted to me and open them up to
all the readers of UNDU. If you know the answer to a question, feel free to send it in to
RobertV@compuserve.com. I will chose the best solution to the question and post it in the following
issue. This way, everyone gets to see the answer!
The solutions can be anything including even shareware components that might solve a particular
problem.

Last Months questions were:
Steven Lucey asked "How do you make forms so that they will display correctly no matter the resolution
or font size (large or small) at runtime?"

I received quite a few responses on this one, but I found that the Borland discussed the issue the best.
Take a look at Borland's response to this in their tech sheet #2861.

Steven Gill asked "I am trying to work out how to add bitmaps to StringGrids. I want to use the first
column as a status column with a graphic indicating the status.    What's a simple way to do this?"

Interestingly, this one was answered by an unrelated tip sent in by Paul Harding on Displaying Multi-
colored Text in a String Grid. Check out the last few paragraphs and you'll see where this is going!

I didn't get any really good questions for this month, so hopefully, I will get a few for next month!

Return to Front Page

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for TipBox.pas
unit tipbox;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, ExtCtrls;

type
 TTipOfTheDayForm = class(TForm)
 Panel1: TPanel;
 OKBtn: TButton;
 ShowOnStartup: TCheckBox;
 Bevel1: TBevel;
 NextBtn: TButton;
 BulbImage: TImage;
 diduknow: TLabel;
 Tip: TLabel;
 procedure NextBtnClick(Sender: TObject);
 procedure OKBtnClick(Sender: TObject);
 procedure FormShow(Sender: TObject);
 protected
 Tips: TStringList;
 public
 TipFileName: String;
 end;

var
 TipOfTheDayForm: TTipOfTheDayForm;

implementation

{$R *.DFM}

procedure TTipOfTheDayForm.NextBtnClick(Sender: TObject);
begin
 Tips.Move(1, Tips.Count - 1);
 Tip.Caption := Tips[1];
end;

procedure TTipOfTheDayForm.OKBtnClick(Sender: TObject);
begin
 if ShowOnStartup.Checked
 then Tips[0] := 'True'
 else Tips[0] := 'False';
 Tips.Move(1, Tips.Count - 1);
 Tips.SaveToFile(TipFileName);
 Tips.Free;
 Close;
end;

procedure TTipOfTheDayForm.FormShow(Sender: TObject);
begin
 Tips := TStringList.Create;
 Tips.LoadFromFile(TipFileName);
 Tip.Caption := Tips[1];
 if Tips[0]='True'
 then ShowOnStartup.Checked := True
 else ShowOnStartup.Checked := False;
end;

end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for TipDlg.pas
unit tipdlg;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, TipBox, IniFiles;

type
 TTipOfTheDayDlg = class(TComponent)
 private
 FTipFileName: String;
 function GetShowStatus: Boolean;
 published
 property TipFile: String read FTipFileName write FTipFileName;
 property ShowOnStart: Boolean read GetShowStatus;
 public
 procedure Execute;
 end;

procedure Register;

implementation

function TTipOfTheDayDlg.GetShowStatus: Boolean;
 var FileHandle: Integer;
 Buffer: String;
begin
 FileHandle := FileOpen(FTipFileName, fmOpenWrite);
 if FileHandle = -1
 then begin
 Result := False;
 exit;
 end
 else begin
 FileRead(FileHandle, Buffer, 4);
 FileClose(FileHandle);
 if Buffer = 'True'
 then Result := True
 else Result := False;
 end;
end;

procedure TTipOfTheDayDlg.Execute;
begin
 TipOfTheDayForm := TTipOfTheDayForm.Create(Application);
 try
 TipOfTheDayForm.TipFileName := FTipFileName;
 TipOfTheDayForm.ShowModal;
 finally
 TipOfTheDayForm.Free;
 end;
end;

procedure Register;
begin
 RegisterComponents('UNDU', [TTipOfTheDayDlg]);
end;

end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for TipBox.dfm
object TipOfTheDayForm: TTipOfTheDayForm
 Left = 187
 Top = 115
 Width = 375
 Height = 218
 BorderIcons = []
 Caption = 'Tip of the Day'
 Font.Color = clWindowText
 Font.Height = -11
 Font.Name = 'MS Sans Serif'
 Font.Style = []
 OnShow = FormShow
 PixelsPerInch = 96
 TextHeight = 13
 object Bevel1: TBevel
 Left = 8
 Top = 8
 Width = 257
 Height = 153
 end
 object Panel1: TPanel
 Left = 16
 Top = 16
 Width = 241
 Height = 137
 BevelOuter = bvNone
 BorderWidth = 1
 Color = clWhite
 TabOrder = 0
 object BulbImage: TImage
 Left = 8
 Top = 8
 Width = 28
 Height = 37
 AutoSize = True
 Picture.Data = {
 07544269746D6170C6020000424DC60200000000000076000000280000001C00
 0000250000000100040000000000500200000000000000000000100000001000
 000000000000000080000080000000808000800000008000800080800000C0C0
 C000808080000000FF0000FF000000FFFF00FF000000FF00FF00FFFF0000FFFF
 FF00FFFFFFFFFFFFF8FFFFFFFFFFFFFF0000FFFFFFFFFFFF888FFFFFFFFFFFFF
 0000FFFFFFFFFFF88888FFFFFFFFFFFF0000FFFFFFFFFF8888888FFFFFFFFFFF
 0000FFFFFFFFF888808888FFFFFFFFFF0000FFFFFFFF88880F08888FFFFFFFFF
 0100FFFFFFF88880FFF08888FFFFFFFF0000FFFFFF88880FEFEF08888FFFFFFF
 0100FFFFF88880FFFFFFF08888FFFFFF0000FFFF88880FEFEFEFEF08888FFFFF
 0000FFF88880FFFFFFFFFFF08888FFFF0000FF88880FEFEF0000FFEF08888FFF
 0000FFF880FFFFF007700FFFF088FFFF0000FFFF0FEFEFE088880FEFEF0FFFFF
 0000FFF0FFFFFFF077770FFFFFF0FFFF0000FF0FEFEFEFE088880FEFEFEF0FFF
 0000FFF8FFFFFFF0BBBB0FFFFFF8FFFF0100FFFF8FEFEF0BBBBBB0EFEF8FFFFF
 0000FFFFF8FFF0BBB00BBB0FF8FFFFFF0000FFFFFF8F0BBBB00BBBB08FFFFFFF
 0000FFFFFFF0BBBBBBBBBBBB0FFFFFFF5E00FFFF0FF0BBBBB00BBBBB0FF0FFFF
 0000FFFFFF0BBBBBB00BBBBBB0FFFFFFFFFFBFBFBF0BBBBBB00BBBBBB0FBFBFB
 00A0FFF80F0BBBBBB00BBBBBB0F08FFF0100BFBFBF0BBBBBB00BBBBBB0FBFBFB
 0100FFFFFF0BBBBBB00BBBBBB0FFFFFF0100FFFF0FF0BBBBB00BBBBB0FF0FFFF
 0100FFFFFFFF0BBBBBBBBBB0FFFFFFFF5E00FFFFFFFFF00BBBBBB00FFFFFFFFF
 0000FFFFFB0FFFF000000FFFF0BFFFFF0000FFFFF8BFFFFFFFFFFFFFFB8FFFFF
 0000FFFBFFFFF0FFB0BFF0FFFFFFBFFF0000FFFFBFFFFFFFF8FFFFFFFFFBFFFF
 0000FFFFFFFFFFFFB8BFFFFFFFFFFFFF0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF
 0000FFFFFFFFFFFFBFBFFFFFFFFFFFFF00F0}
 end

 object diduknow: TLabel
 Left = 56
 Top = 24
 Width = 74
 Height = 13
 Caption = 'Did you know...'
 end
 object Tip: TLabel
 Left = 8
 Top = 64
 Width = 225
 Height = 65
 AutoSize = False
 WordWrap = True
 end
 end
 object OKBtn: TButton
 Left = 272
 Top = 8
 Width = 89
 Height = 25
 Caption = 'OK'
 Default = True
 TabOrder = 1
 OnClick = OKBtnClick
 end
 object ShowOnStartup: TCheckBox
 Left = 8
 Top = 168
 Width = 129
 Height = 17
 Caption = 'Show Tips at Startup'
 State = cbChecked
 TabOrder = 2
 end
 object NextBtn: TButton
 Left = 272
 Top = 48
 Width = 89
 Height = 25
 Caption = 'Next Tip'
 TabOrder = 3
 OnClick = NextBtnClick
 end
end

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for WSC.pas
unit WSC;

interface

uses
 SysUtils, Messages, Classes, Forms, Windows;

type
 TMyShell = class(TComponent)
 private
 FParent : THandle; // keep forms handle
 FOldDefWndProc, // keep the forms WndProc
 FNewDefWndProc : pointer; // our new WndProc
 procedure NewDefWndProc (var Msg : TMessage);
 public
 constructor Create (AOwner : TComponent); override;
 destructor Destroy; override;
 procedure Loaded; override;
 end;

implementation

// Get the forms Parent and create a pointer to our new WndProc
constructor TMyShell.Create (AOwner : TComponent);
begin
 inherited Create (AOwner);
 FParent := (AOwner as TForm).Handle;
 FNewDefWndProc := MakeObjectInstance (NewDefWndProc)
end;

// Chuck it all
destructor TMyShell.Destroy;
begin
 SetWindowLong (FParent, GWL_WndProc, longint(FOldDefWndProc));
 FreeObjectInstance (FNewDefWndProc);
 inherited Destroy
end;

// Put our WndProc into the Form
procedure TMyShell.Loaded;
begin
 inherited Loaded;
 FOldDefWndProc := pointer(SetWindowLong (FParent, GWL_WndProc,
longint(FNewDefWndProc)))
end;

// Our new WndProc - this does nothing
procedure TMyShell.NewDefWndProc (var Msg : TMessage);
begin

// put your code in here ---

// Call the forms WndProc
 with Msg do
 Result := CallWindowProc (FOldDefWndProc, FParent, Msg, wParam, lParam)
end;

end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for Aspect.pas
// Aspect Component - used to control form or client area shape (aspect ratio)

unit Aspect;
interface
uses SysUtils, Messages, Classes, Forms, Windows;
type
 TAspect = class(TComponent)
 private
 FParent : THandle;
 FOldDefWndProc,
 FNewDefWndProc : pointer;
 FAspectX,
 FAspectY : integer;
 FActive,
 FClient : boolean;
 procedure NewDefWndProc (var Msg : TMessage);
 protected
 public
 constructor Create (AOwner : TComponent); override; destructor
 Destroy; override;
 procedure Loaded; override;
 published
 // activate the aspect ratio control
 property Active : boolean read FActive write FActive default true;
 // set the X part of the aspect ratio
 property AspectX : integer read FAspectX write FAspectX default 1;
 // set the Y part of the aspect ratio
 property AspectY : integer read FAspectY write FAspectY default 1;
 // does the ratio apply to the client area or to the whole form area?
 property Client : boolean read FClient write FClient default true;
 end;

implementation

constructor TAspect.Create (AOwner : TComponent);
begin
 inherited Create (AOwner);
 FParent := (AOwner as TForm).Handle;
 FNewDefWndProc := MakeObjectInstance (NewDefWndProc);
 FActive := true;
 FClient := true;
 FAspectX := 1;
 FAspectY := 1;
end;

destructor TAspect.Destroy;
begin
 SetWindowLong (FParent, GWL_WndProc, longint(FOldDefWndProc));
 FreeObjectInstance (FNewDefWndProc);
 inherited Destroy;
end;

procedure TAspect.Loaded;
begin
 inherited Loaded;
 FOldDefWndProc := pointer(SetWindowLong(FParent, GWL_WndProc,
 longint(FNewDefWndProc)));

end;

procedure TAspect.NewDefWndProc (var Msg : TMessage);
var
 CaptionHt,Xi,Yi : integer;
begin
 if FActive then with Msg do
 begin
 if Msg = WM_Sizing then
 begin
 if FClient then
 CaptionHt := GetSystemMetrics (sm_CYCaption)
 else
 CaptionHt := 0;
 with PRect (lParam)^ do
 case wParam of
 WMSZ_BottomRight,
 WMSZ_Bottom : Right := Left + (Bottom - Top) *
 AspectX div AspectY - CaptionHt;
 WMSZ_BottomLeft,
 WMSZ_Right : Bottom := Top + (Right - Left)*
 AspectY div AspectX + CaptionHt;
 WMSZ_TopRight,
 WMSZ_Left : Top := Bottom - (Right - Left) *
 AspectY div AspectX - CaptionHt;
 WMSZ_TopLeft,
 WMSZ_Top : Left := Right - (Bottom - Top) *
 AspectX div AspectY + CaptionHt;
 end;
 Result := 0;
 exit;
 end;
 if Msg = WM_GetMinMaxInfo then
 begin
 if FClient then
 CaptionHt := GetSystemMetrics (sm_CYCaption)
 else
 CaptionHt := 0;
 with PMinMaxInfo (lParam)^.ptMaxSize do
 begin
 Xi := X;
 Yi := X * FAspectY div FAspectX;
 if Yi > GetSystemMetrics (sm_CYScreen) then
 begin
 Yi := Y;
 Xi := Y * FAspectX div FAspectY
 end;
 X := Xi - CaptionHt;
 Y := Yi;
 end;
 Result := 0;
 exit;
 end;
 end;
 with Msg do
 Result := CallWindowProc(FOldDefWndProc,FParent, Msg,wParam,lParam);
end;

end.

    The Unofficial Newsletter of Delphi Users - Issue #20 - March 1997
Source for Min/Max
// MinMax component - used to form resizing

unit
 Minmax;

interface

uses
 SysUtils, Messages, Classes, Forms, Windows;

type
 TBeforeResizeEvent = procedure (Sender : TObject; var MaxMinInfo : TMinMaxInfo) of
object;

 TMinMaxChange = (mmMaximizedWidth, mmMaximizedHeight, mmMaximizedLeft,
mmMaximizedTop,
 mmMinTrackWidth, mmMinTrackHeight, mmMaxTrackWidth,
mmMaxTrackHeight);
 TMinMaxChanges = set of TMinMaxChange;

 TMinMax = class(TComponent)
 private
 FParent : THandle;
 FOldDefWndProc,
 FNewDefWndProc : pointer;
 FActive : boolean;
 FMaximizedWidth,
 FMaximizedHeight,
 FMaximizedLeft,
 FMaximizedTop,
 FMinTrackWidth,
 FMinTrackHeight,
 FMaxTrackWidth,
 FMaxTrackHeight : integer;
 FChanges : TMinMaxChanges;
 FBeforeResize : TBeforeResizeEvent;
 procedure NewDefWndProc (var Msg : TMessage);
 protected
 constructor Create (AOwner : TComponent); override;
 destructor Destroy; override;
 procedure Loaded; override;
 public
 published
 property Active : boolean read FActive write FActive default true;
 property Changes : TMinMaxChanges read FChanges write FChanges default [];
 property MaximizedWidth : integer read FMaximizedWidth write FMaximizedWidth;
 property MaximizedHeight : integer read FMaximizedHeight write FMaximizedHeight;
 property MaximizedLeft : integer read FMaximizedLeft write FMaximizedLeft;
 property MaximizedTop : integer read FMaximizedTop write FMaximizedTop;
 property MinTrackWidth : integer read FMinTrackWidth write FMinTrackWidth;
 property MinTrackHeight : integer read FMinTrackHeight write FMinTrackHeight;
 property MaxTrackWidth : integer read FMaxTrackWidth write FMaxTrackWidth;
 property MaxTrackHeight : integer read FMaxTrackHeight write FMaxTrackHeight;
 property OnBeforeResize : TBeforeResizeEvent read FBeforeResize write
FBeforeResize;
 end;

implementation

constructor TMinMax.Create (AOwner : TComponent);
begin
 inherited Create (AOwner);

 FParent := (AOwner as TForm).Handle;
 FNewDefWndProc := MakeObjectInstance (NewDefWndProc);
 FActive := true;
 FChanges := [];
 FMaximizedLeft := - GetSystemMetrics (sm_CXFrame);
 FMaximizedTop := - GetSystemMetrics (sm_CXFrame);
 FMaximizedWidth := GetSystemMetrics (sm_CXScreen) - 2 * FMaximizedLeft;
 FMaximizedHeight := GetSystemMetrics (sm_CYScreen) - 2 * FMaximizedTop;
 FMinTrackWidth := GetSystemMetrics (sm_CXMin);
 FMinTrackHeight := GetSystemMetrics (sm_CYMin);
 FMaxTrackWidth := FMaximizedWidth;
 FMaxTrackHeight := FMaximizedHeight
end;

destructor TMinMax.Destroy;
begin
 FBeforeResize := nil;
 SetWindowLong (FParent, GWL_WndProc, longint(FOldDefWndProc));
 FreeObjectInstance (FNewDefWndProc);
 inherited Destroy
end;

procedure TMinMax.Loaded;
begin
 inherited Loaded;
 FOldDefWndProc := pointer(SetWindowLong (FParent, GWL_WndProc,
longint(FNewDefWndProc)))
end;

procedure TMinMax.NewDefWndProc (var Msg : TMessage);
begin
 with Msg do
 if (Msg = WM_GetMinMaxInfo) and FActive then
 begin
 with PMinMaxInfo (lParam)^ do
 begin
 if mmMaximizedWidth in FChanges then
 ptMaxSize.X := FMaximizedWidth;
 if mmMaximizedHeight in FChanges then
 ptMaxSize.Y := FMaximizedHeight;
 if mmMaximizedLeft in FChanges then
 ptMaxPosition.X := FMaximizedLeft;
 if mmMaximizedTop in FChanges then
 ptMaxPosition.Y := FMaximizedTop;
 if mmMinTrackWidth in FChanges then
 ptMinTrackSize.X := FMinTrackWidth;
 if mmMinTrackHeight in FChanges then
 ptMinTrackSize.Y := FMinTrackHeight;
 if mmMaxTrackWidth in FChanges then
 ptMaxTrackSize.X := FMaxTrackWidth;
 if mmMaxTrackHeight in FChanges then
 ptMaxTrackSize.Y := FMaxTrackHeight
 end;

 if Assigned (FBeforeResize) then
 FBeforeResize (Self, PMinMaxInfo (lParam)^);

 Result := 0
 end else

 Result := CallWindowProc (FOldDefWndProc, FParent, Msg, wParam, lParam)
end;

end.

